Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 131343 by physicstutes last updated on 03/Feb/21

A mapping is defined as G→S where (G,×) and (S,+),   show that the mapping f(x) = ln x is an isomophism.

$$\mathrm{A}\:\mathrm{mapping}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{as}\:{G}\rightarrow{S}\:\mathrm{where}\:\left({G},×\right)\:\mathrm{and}\:\left({S},+\right), \\ $$$$\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{mapping}\:{f}\left({x}\right)\:=\:\mathrm{ln}\:{x}\:\mathrm{is}\:\mathrm{an}\:\mathrm{isomophism}. \\ $$

Answered by mindispower last updated on 04/Feb/21

isomlrphisme is bijection  morphisme  without knowing G and S we can say just  f(1)=0  f(xy)=f(x)+f(y) if x,y>0

$${isomlrphisme}\:{is}\:{bijection}\:\:{morphisme} \\ $$$${without}\:{knowing}\:{G}\:{and}\:{S}\:{we}\:{can}\:{say}\:{just} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$${f}\left({xy}\right)={f}\left({x}\right)+{f}\left({y}\right)\:{if}\:{x},{y}>\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com