Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 131248 by bramlexs22 last updated on 03/Feb/21

If α and β are the coefficient   of x^8  and x^(−24)  respectively   in the expansion of [ x^4 +2+(1/x^4 ) ]^(10)   in powers of x then (α/β) is equal to

$${If}\:\alpha\:{and}\:\beta\:{are}\:{the}\:{coefficient}\: \\ $$$${of}\:{x}^{\mathrm{8}} \:{and}\:{x}^{−\mathrm{24}} \:{respectively}\: \\ $$$${in}\:{the}\:{expansion}\:{of}\:\left[\:{x}^{\mathrm{4}} +\mathrm{2}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\:\right]^{\mathrm{10}} \\ $$$${in}\:{powers}\:{of}\:{x}\:{then}\:\frac{\alpha}{\beta}\:{is}\:{equal}\:{to}\: \\ $$

Answered by EDWIN88 last updated on 03/Feb/21

 [(x^4 +x^(−4) )+2 ]^(10) = Σ_(k=0) ^(20)   (((20)),((  k)) ) (x^4 +x^(−4) )^(20−k)  (2)^k    = Σ_(k=0) ^(20)   (((20)),((  k)) ) 2^k  [ Σ_(k=0) ^(20−k)   (((20−k)),((     k)) )(x^4 )^(20−k)  (x^(−4) )^k  ]

$$\:\left[\left({x}^{\mathrm{4}} +{x}^{−\mathrm{4}} \right)+\mathrm{2}\:\right]^{\mathrm{10}} =\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{20}} {\sum}}\:\begin{pmatrix}{\mathrm{20}}\\{\:\:{k}}\end{pmatrix}\:\left({x}^{\mathrm{4}} +{x}^{−\mathrm{4}} \right)^{\mathrm{20}−{k}} \:\left(\mathrm{2}\right)^{{k}} \\ $$$$\:=\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{20}} {\sum}}\:\begin{pmatrix}{\mathrm{20}}\\{\:\:{k}}\end{pmatrix}\:\mathrm{2}^{{k}} \:\left[\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{20}−{k}} {\sum}}\:\begin{pmatrix}{\mathrm{20}−{k}}\\{\:\:\:\:\:{k}}\end{pmatrix}\left({x}^{\mathrm{4}} \right)^{\mathrm{20}−{k}} \:\left({x}^{−\mathrm{4}} \right)^{{k}} \:\right] \\ $$

Answered by mr W last updated on 03/Feb/21

[x^4 +2+(1/x^4 )]^(10)   =(1/x^(40) )[x^8 +2x^4 +1]^(10)   =(1/x^(40) )(1+x^4 )^(20)   =(1/x^(40) )Σ_(k=0) ^(20) C_k ^(20) x^(4k)   =Σ_(k=0) ^(20) C_k ^(20) x^(4k−40)   term x^8 : 4k−40=8 ⇒k=12 ⇒α=C_(12) ^(20)   term x^(−24) : 4k−40=−24 ⇒k=4 ⇒β=C_4 ^(20)   (α/β)=(C_(12) ^(20) /C_4 ^(20) )=((20!)/(12!8!))×((4!×16!)/(20!))=((16×15×14×13)/(8×7×6×5))  =26

$$\left[{x}^{\mathrm{4}} +\mathrm{2}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\right]^{\mathrm{10}} \\ $$$$=\frac{\mathrm{1}}{{x}^{\mathrm{40}} }\left[{x}^{\mathrm{8}} +\mathrm{2}{x}^{\mathrm{4}} +\mathrm{1}\right]^{\mathrm{10}} \\ $$$$=\frac{\mathrm{1}}{{x}^{\mathrm{40}} }\left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\mathrm{20}} \\ $$$$=\frac{\mathrm{1}}{{x}^{\mathrm{40}} }\underset{{k}=\mathrm{0}} {\overset{\mathrm{20}} {\sum}}{C}_{{k}} ^{\mathrm{20}} {x}^{\mathrm{4}{k}} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\mathrm{20}} {\sum}}{C}_{{k}} ^{\mathrm{20}} {x}^{\mathrm{4}{k}−\mathrm{40}} \\ $$$${term}\:{x}^{\mathrm{8}} :\:\mathrm{4}{k}−\mathrm{40}=\mathrm{8}\:\Rightarrow{k}=\mathrm{12}\:\Rightarrow\alpha={C}_{\mathrm{12}} ^{\mathrm{20}} \\ $$$${term}\:{x}^{−\mathrm{24}} :\:\mathrm{4}{k}−\mathrm{40}=−\mathrm{24}\:\Rightarrow{k}=\mathrm{4}\:\Rightarrow\beta={C}_{\mathrm{4}} ^{\mathrm{20}} \\ $$$$\frac{\alpha}{\beta}=\frac{{C}_{\mathrm{12}} ^{\mathrm{20}} }{{C}_{\mathrm{4}} ^{\mathrm{20}} }=\frac{\mathrm{20}!}{\mathrm{12}!\mathrm{8}!}×\frac{\mathrm{4}!×\mathrm{16}!}{\mathrm{20}!}=\frac{\mathrm{16}×\mathrm{15}×\mathrm{14}×\mathrm{13}}{\mathrm{8}×\mathrm{7}×\mathrm{6}×\mathrm{5}} \\ $$$$=\mathrm{26} \\ $$

Commented by EDWIN88 last updated on 03/Feb/21

nice

$${nice} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com