Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 130925 by Chhing last updated on 30/Jan/21

                     Problem     Without  L′Hopital     calculate     lim_(x→0) ((tan^2 (x)−x^2 cos(2x))/(x^2 −sin^2 (x)))

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Problem} \\ $$$$\:\:\:\mathrm{Without}\:\:\mathrm{L}'\mathrm{Hopital} \\ $$$$\:\:\:\mathrm{calculate} \\ $$$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tan}^{\mathrm{2}} \left(\mathrm{x}\right)−\mathrm{x}^{\mathrm{2}} \mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}} −\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)} \\ $$

Commented by malwan last updated on 30/Jan/21

x→0  ⇒tan x = sin x ∧ cos2x = 1  lim_(x→0)  ((sin^2 x − x^2 )/(x^2  − sin^2 x)) = −1  It is not right  whay?

$${x}\rightarrow\mathrm{0} \\ $$$$\Rightarrow{tan}\:{x}\:=\:{sin}\:{x}\:\wedge\:{cos}\mathrm{2}{x}\:=\:\mathrm{1} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{{sin}^{\mathrm{2}} {x}\:−\:{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} \:−\:{sin}^{\mathrm{2}} {x}}\:=\:−\mathrm{1} \\ $$$${It}\:{is}\:{not}\:{right} \\ $$$${whay}? \\ $$

Commented by Chhing last updated on 30/Jan/21

 but  tan(0)=0

$$\:\mathrm{but}\:\:\mathrm{tan}\left(\mathrm{0}\right)=\mathrm{0}\: \\ $$

Commented by malwan last updated on 30/Jan/21

and sin(0)=0

$${and}\:{sin}\left(\mathrm{0}\right)=\mathrm{0} \\ $$

Commented by Chhing last updated on 31/Jan/21

Yes, sir

$$\mathrm{Yes},\:\mathrm{sir} \\ $$

Answered by bramlexs22 last updated on 30/Jan/21

  = lim_(x→0)  (((x+(x^3 /3))^2 −x^2 (1−2x^2 ))/(x^2 −(x−(x^3 /6))^2 ))   = lim_(x→0)  ((x^2 (1+(x^2 /3))^2 −x^2 (1−2x^2 ))/(x^2 (1−(1−(x^2 /6))^2 )))   = lim_(x→0)  (((1+((2x^2 )/3))−1+2x^2 )/(1−(1−(x^2 /3))))   = lim_(x→0)  (((((8x^2 )/3)))/(((x^2 /3))))   = 8 ✓

$$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left({x}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} −\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\right)^{\mathrm{2}} } \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} \left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \left(\mathrm{1}−\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}\right)^{\mathrm{2}} \right)} \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{3}}\right)−\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{1}−\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)} \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\frac{\mathrm{8}{x}^{\mathrm{2}} }{\mathrm{3}}\right)}{\left(\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)} \\ $$$$\:=\:\mathrm{8}\:\checkmark \\ $$

Commented by bramlexs22 last updated on 30/Jan/21

Answered by benjo_mathlover last updated on 30/Jan/21

 lim_(x→0)  ((tan^2 x−x^2 (cos^2 x−sin^2 x))/(x^2 −sin^2 x))   lim_(x→0)  ((tan^2 x−x^2 cos^2 x+x^2 sin^2 x)/((x+sin x)(x−sin x)))   lim_(x→0)  (((tan x+xcos x)(tan x−xcos x)+x^2 sin^2 x)/((x+sin x)(x−sin x)))  lim_(x→0)  (((((tan x)/x)+cos x)(x+(x^3 /3)−x(1−(1/2)x^2 ))+x^2 (x−(x^3 /6)))/((1+((sin x)/x))(x−x+(x^3 /6))))  lim_(x→0)  ((2((x^3 /3)+(x^3 /2))+x^3 −(x^5 /6))/(2((x^3 /6))))=lim_(x→0)  (((8/3)−(x^2 /6))/(1/3))   = 8.

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}−\mathrm{x}^{\mathrm{2}} \left(\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} −\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}−\mathrm{x}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{x}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}{\left(\mathrm{x}+\mathrm{sin}\:\mathrm{x}\right)\left(\mathrm{x}−\mathrm{sin}\:\mathrm{x}\right)} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{tan}\:\mathrm{x}+\mathrm{xcos}\:\mathrm{x}\right)\left(\mathrm{tan}\:\mathrm{x}−\mathrm{xcos}\:\mathrm{x}\right)+\mathrm{x}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}{\left(\mathrm{x}+\mathrm{sin}\:\mathrm{x}\right)\left(\mathrm{x}−\mathrm{sin}\:\mathrm{x}\right)} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\frac{\mathrm{tan}\:\mathrm{x}}{\mathrm{x}}+\mathrm{cos}\:\mathrm{x}\right)\left(\mathrm{x}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\mathrm{x}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \right)\right)+\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\right)}{\left(\mathrm{1}+\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}\right)\left(\mathrm{x}−\mathrm{x}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\right)} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\left(\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{2}}\right)+\mathrm{x}^{\mathrm{3}} −\frac{\mathrm{x}^{\mathrm{5}} }{\mathrm{6}}}{\mathrm{2}\left(\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\right)}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{8}}{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{6}}}{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\:=\:\mathrm{8}.\: \\ $$

Commented by bramlexs22 last updated on 30/Jan/21

yeahhh...✓

$${yeahhh}...\checkmark \\ $$

Commented by Chhing last updated on 30/Jan/21

Thank you

$$\mathrm{Thank}\:\mathrm{you} \\ $$

Commented by Chhing last updated on 30/Jan/21

Thank you

$$\mathrm{Thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com