Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 130921 by pticantor last updated on 30/Jan/21

let q∈R/ ∣q∣<1     show that  Σ_(k=0) ^(+∞) k^2 q^k =((q^2 +q)/((1−q)^3 ))

$$\boldsymbol{{let}}\:\boldsymbol{{q}}\in\mathbb{R}/\:\mid\boldsymbol{{q}}\mid<\mathrm{1} \\ $$ $$\: \\ $$ $$\boldsymbol{{show}}\:\boldsymbol{{that}} \\ $$ $$\underset{\boldsymbol{{k}}=\mathrm{0}} {\overset{+\infty} {\sum}}\boldsymbol{{k}}^{\mathrm{2}} \boldsymbol{{q}}^{\boldsymbol{{k}}} =\frac{\boldsymbol{{q}}^{\mathrm{2}} +\boldsymbol{{q}}}{\left(\mathrm{1}−\boldsymbol{{q}}\right)^{\mathrm{3}} } \\ $$

Answered by Dwaipayan Shikari last updated on 30/Jan/21

S=Σ_(k=0) ^∞ k^2 q^k =1^2 q+2^2 q^2 +3^2 q^3 +....  S(1−q)=     q+(2^2 −1^2 )q^2 +(3^2 −2^2 )q^3 +...  S(1−q)^2 =q+2q^2 +2q^3 +2q^4 +...  S(1−q)^2 =((2q)/((1−q)))−q⇒S=((q^2 +q)/((1−q)^3 ))

$${S}=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{k}^{\mathrm{2}} {q}^{{k}} =\mathrm{1}^{\mathrm{2}} {q}+\mathrm{2}^{\mathrm{2}} {q}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} {q}^{\mathrm{3}} +.... \\ $$ $${S}\left(\mathrm{1}−{q}\right)=\:\:\:\:\:{q}+\left(\mathrm{2}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} \right){q}^{\mathrm{2}} +\left(\mathrm{3}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} \right){q}^{\mathrm{3}} +... \\ $$ $${S}\left(\mathrm{1}−{q}\right)^{\mathrm{2}} ={q}+\mathrm{2}{q}^{\mathrm{2}} +\mathrm{2}{q}^{\mathrm{3}} +\mathrm{2}{q}^{\mathrm{4}} +... \\ $$ $${S}\left(\mathrm{1}−{q}\right)^{\mathrm{2}} =\frac{\mathrm{2}{q}}{\left(\mathrm{1}−{q}\right)}−{q}\Rightarrow{S}=\frac{{q}^{\mathrm{2}} +{q}}{\left(\mathrm{1}−{q}\right)^{\mathrm{3}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com