Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 130795 by mr W last updated on 29/Jan/21

Commented by mr W last updated on 29/Jan/21

find the locus of point P.

$${find}\:{the}\:{locus}\:{of}\:{point}\:{P}. \\ $$

Answered by mr W last updated on 29/Jan/21

Commented by mr W last updated on 29/Jan/21

μ=(b/a)  say A(a cos θ, b sin θ)  tan ϕ=((b cos θ)/(a sin θ))=(μ/(tan θ))  ⇒ϕ=tan^(−1) ((μ/(tan θ)))  x_P =a cos θ−a cos θ cos 2ϕ+b(1+sin θ) sin 2ϕ  ⇒x_P =a[cos θ (1−cos 2ϕ)+μ(1+sin θ) sin 2ϕ]  y_P =b sin θ+a cos θ sin 2ϕ+b(1+sin θ) cos 2ϕ  ⇒y_P =a[μ sin θ+cos θ sin 2ϕ+μ(1+sin θ) cos 2ϕ]

$$\mu=\frac{{b}}{{a}} \\ $$$${say}\:{A}\left({a}\:\mathrm{cos}\:\theta,\:{b}\:\mathrm{sin}\:\theta\right) \\ $$$$\mathrm{tan}\:\varphi=\frac{{b}\:\mathrm{cos}\:\theta}{{a}\:\mathrm{sin}\:\theta}=\frac{\mu}{\mathrm{tan}\:\theta} \\ $$$$\Rightarrow\varphi=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mu}{\mathrm{tan}\:\theta}\right) \\ $$$${x}_{{P}} ={a}\:\mathrm{cos}\:\theta−{a}\:\mathrm{cos}\:\theta\:\mathrm{cos}\:\mathrm{2}\varphi+{b}\left(\mathrm{1}+\mathrm{sin}\:\theta\right)\:\mathrm{sin}\:\mathrm{2}\varphi \\ $$$$\Rightarrow{x}_{{P}} ={a}\left[\mathrm{cos}\:\theta\:\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}\varphi\right)+\mu\left(\mathrm{1}+\mathrm{sin}\:\theta\right)\:\mathrm{sin}\:\mathrm{2}\varphi\right] \\ $$$${y}_{{P}} ={b}\:\mathrm{sin}\:\theta+{a}\:\mathrm{cos}\:\theta\:\mathrm{sin}\:\mathrm{2}\varphi+{b}\left(\mathrm{1}+\mathrm{sin}\:\theta\right)\:\mathrm{cos}\:\mathrm{2}\varphi \\ $$$$\Rightarrow{y}_{{P}} ={a}\left[\mu\:\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\:\mathrm{sin}\:\mathrm{2}\varphi+\mu\left(\mathrm{1}+\mathrm{sin}\:\theta\right)\:\mathrm{cos}\:\mathrm{2}\varphi\right] \\ $$

Commented by mr W last updated on 29/Jan/21

Commented by mr W last updated on 29/Jan/21

Commented by mr W last updated on 29/Jan/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com