Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 130257 by pete last updated on 23/Jan/21

n is an integer  prove algebraically that the sum of   (1/2)n(n+1) and (1/2)(n+1)(n+2) is always  a square number.  note: write your expression in a form  that clearly shows a square number.

$${n}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer} \\ $$$$\mathrm{prove}\:\mathrm{algebraically}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{n}\left({n}+\mathrm{1}\right)\:\mathrm{and}\:\frac{\mathrm{1}}{\mathrm{2}}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\:\mathrm{is}\:\mathrm{always} \\ $$$$\mathrm{a}\:\mathrm{square}\:\mathrm{number}. \\ $$$$\mathrm{note}:\:{write}\:{your}\:{expression}\:{in}\:{a}\:{form} \\ $$$${that}\:{clearly}\:{shows}\:{a}\:{square}\:{number}. \\ $$

Commented by Dwaipayan Shikari last updated on 23/Jan/21

(1/2)n(n+1)+(1/2)(n+1)(n+2)=(1/2)(n+1)(n+n+2)=(n+1)^2

$$\frac{\mathrm{1}}{\mathrm{2}}{n}\left({n}+\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({n}+\mathrm{1}\right)\left({n}+{n}+\mathrm{2}\right)=\left({n}+\mathrm{1}\right)^{\mathrm{2}} \\ $$

Commented by pete last updated on 23/Jan/21

thank you sir, very much

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir},\:\mathrm{very}\:\mathrm{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com