Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 130186 by mohammad17 last updated on 23/Jan/21

if Z is any boint on the circle ∣Z−1∣=1    prove that arg(Z−1)=2arg(Z)=(2/3)arg(Z^2 −Z)

$${if}\:{Z}\:{is}\:{any}\:{boint}\:{on}\:{the}\:{circle}\:\mid{Z}−\mathrm{1}\mid=\mathrm{1} \\ $$$$ \\ $$$${prove}\:{that}\:{arg}\left({Z}−\mathrm{1}\right)=\mathrm{2}{arg}\left({Z}\right)=\frac{\mathrm{2}}{\mathrm{3}}{arg}\left({Z}^{\mathrm{2}} −{Z}\right) \\ $$

Commented by mohammad17 last updated on 23/Jan/21

?????

$$????? \\ $$

Answered by mathmax by abdo last updated on 26/Jan/21

this exercise is solved

$$\mathrm{this}\:\mathrm{exercise}\:\mathrm{is}\:\mathrm{solved} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com