Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 130132 by bait last updated on 22/Jan/21

solve ∫∫_G (7x−y)dxdy, where G is given by y=0  x+2y=3, x=y^2     i want to know if the integral below is a correct  representation of the integral above.   (∫_0 ^(3/2) ∫_0 ^(9/4) (7x−y)dxdy).

$${solve}\:\int\int_{{G}} \left(\mathrm{7}{x}−{y}\right){dxdy},\:{where}\:{G}\:{is}\:{given}\:{by}\:{y}=\mathrm{0} \\ $$$${x}+\mathrm{2}{y}=\mathrm{3},\:{x}={y}^{\mathrm{2}} \\ $$$$ \\ $$$${i}\:{want}\:{to}\:{know}\:{if}\:{the}\:{integral}\:{below}\:{is}\:{a}\:{correct} \\ $$$${representation}\:{of}\:{the}\:{integral}\:{above}. \\ $$$$\:\left(\underset{\mathrm{0}} {\overset{\frac{\mathrm{3}}{\mathrm{2}}} {\int}}\underset{\mathrm{0}} {\overset{\frac{\mathrm{9}}{\mathrm{4}}} {\int}}\left(\mathrm{7}{x}−{y}\right){dxdy}\right). \\ $$

Answered by Ar Brandon last updated on 22/Jan/21

Find point of intersection of x+2y=3 and x=y^2   y^2 +2y−3=0 ⇒ (y+3)(y−1)=0 ⇒y=−3, y=1  (9, −3) and (1,1)  I=∣∫_(−3) ^0 ∫_y^2  ^(3−2y) (7x−y)dxdy∣+∣∫_0 ^1 ∫_y^2  ^(3−2y) (7x−y)dxdy∣

$$\mathrm{Find}\:\mathrm{point}\:\mathrm{of}\:\mathrm{intersection}\:\mathrm{of}\:\mathrm{x}+\mathrm{2y}=\mathrm{3}\:\mathrm{and}\:\mathrm{x}=\mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{y}^{\mathrm{2}} +\mathrm{2y}−\mathrm{3}=\mathrm{0}\:\Rightarrow\:\left(\mathrm{y}+\mathrm{3}\right)\left(\mathrm{y}−\mathrm{1}\right)=\mathrm{0}\:\Rightarrow\mathrm{y}=−\mathrm{3},\:\mathrm{y}=\mathrm{1} \\ $$$$\left(\mathrm{9},\:−\mathrm{3}\right)\:\mathrm{and}\:\left(\mathrm{1},\mathrm{1}\right) \\ $$$$\mathcal{I}=\mid\int_{−\mathrm{3}} ^{\mathrm{0}} \int_{\mathrm{y}^{\mathrm{2}} } ^{\mathrm{3}−\mathrm{2y}} \left(\mathrm{7x}−\mathrm{y}\right)\mathrm{dxdy}\mid+\mid\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{y}^{\mathrm{2}} } ^{\mathrm{3}−\mathrm{2y}} \left(\mathrm{7x}−\mathrm{y}\right)\mathrm{dxdy}\mid \\ $$

Commented by bait last updated on 22/Jan/21

Thank you sir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com