Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 129874 by mohammad17 last updated on 20/Jan/21

Commented by mohammad17 last updated on 20/Jan/21

pleas sir help me

$${pleas}\:{sir}\:{help}\:{me} \\ $$

Answered by liberty last updated on 21/Jan/21

  ((x),(y) ) =  (((cos (π/4)    −sin (π/4))),((sin (π/4)       cos (π/4))) )^(−1)  (((x′)),((y′)) )   ((x),(y) ) =  (((((√2)/2)     −((√2)/2))),((((√2)/2)         ((√2)/2))) )^(−1)  (((x′)),((y′)) )   ((x),(y) ) = (1/1) (((   ((√2)/2)      ((√2)/2))),((−((√2)/2)    ((√2)/2))) )   (((x′)),((y′)) )   ((x),(y) ) =  (((   ((√2)/2)(x′+y′))),((−((√2)/2)(x′−y′))) )  ⇔(√(((√2)/2)(x+y))) +(√(((√2)/2)(y−x))) = 1  ⇔ (2^(1/4) /2^(1/2) ) ((√(x+y)) +(√(y−x)) )=1   (√(x+y)) + (√(y−x)) = (2)^(1/4)

$$\:\begin{pmatrix}{\mathrm{x}}\\{\mathrm{y}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{cos}\:\frac{\pi}{\mathrm{4}}\:\:\:\:−\mathrm{sin}\:\frac{\pi}{\mathrm{4}}}\\{\mathrm{sin}\:\frac{\pi}{\mathrm{4}}\:\:\:\:\:\:\:\mathrm{cos}\:\frac{\pi}{\mathrm{4}}}\end{pmatrix}^{−\mathrm{1}} \begin{pmatrix}{\mathrm{x}'}\\{\mathrm{y}'}\end{pmatrix} \\ $$$$\begin{pmatrix}{\mathrm{x}}\\{\mathrm{y}}\end{pmatrix}\:=\:\begin{pmatrix}{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\:\:\:\:−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}\\{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}\end{pmatrix}^{−\mathrm{1}} \begin{pmatrix}{\mathrm{x}'}\\{\mathrm{y}'}\end{pmatrix} \\ $$$$\begin{pmatrix}{\mathrm{x}}\\{\mathrm{y}}\end{pmatrix}\:=\:\frac{\mathrm{1}}{\mathrm{1}}\begin{pmatrix}{\:\:\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\:\:\:\:\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}\\{−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\:\:\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}\end{pmatrix}\:\:\begin{pmatrix}{\mathrm{x}'}\\{\mathrm{y}'}\end{pmatrix} \\ $$$$\begin{pmatrix}{\mathrm{x}}\\{\mathrm{y}}\end{pmatrix}\:=\:\begin{pmatrix}{\:\:\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{x}'+\mathrm{y}'\right)}\\{−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{x}'−\mathrm{y}'\right)}\end{pmatrix} \\ $$$$\Leftrightarrow\sqrt{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{x}+\mathrm{y}\right)}\:+\sqrt{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{y}−\mathrm{x}\right)}\:=\:\mathrm{1} \\ $$$$\Leftrightarrow\:\frac{\mathrm{2}^{\mathrm{1}/\mathrm{4}} }{\mathrm{2}^{\mathrm{1}/\mathrm{2}} }\:\left(\sqrt{\mathrm{x}+\mathrm{y}}\:+\sqrt{\mathrm{y}−\mathrm{x}}\:\right)=\mathrm{1} \\ $$$$\:\sqrt{\mathrm{x}+\mathrm{y}}\:+\:\sqrt{\mathrm{y}−\mathrm{x}}\:=\:\sqrt[{\mathrm{4}}]{\mathrm{2}} \\ $$

Commented by MJS_new last updated on 20/Jan/21

error: it must be (√(x+y))+(√(y−x))=(2)^(1/4)   (√x)+(√y)=1 ⇔ y=(1−(√x))^2 =1+x−2(√x)       defined for y≥0∧x≥0  (√(x+y))+(√(y−x))=(2)^(1/4)  ⇔ y=((√2)/4)(2x^2 +1)       the endpoint  ((0),(1) ) of the first graph       becomes  (((−((√2)/2))),(((√2)/2)) )  ⇒ defined for x≥−((√2)/2)  this is a part of a parabola

$$\mathrm{error}:\:\mathrm{it}\:\mathrm{must}\:\mathrm{be}\:\sqrt{{x}+{y}}+\sqrt{{y}−{x}}=\sqrt[{\mathrm{4}}]{\mathrm{2}} \\ $$$$\sqrt{{x}}+\sqrt{{y}}=\mathrm{1}\:\Leftrightarrow\:{y}=\left(\mathrm{1}−\sqrt{{x}}\right)^{\mathrm{2}} =\mathrm{1}+{x}−\mathrm{2}\sqrt{{x}} \\ $$$$\:\:\:\:\:\mathrm{defined}\:\mathrm{for}\:{y}\geqslant\mathrm{0}\wedge{x}\geqslant\mathrm{0} \\ $$$$\sqrt{{x}+{y}}+\sqrt{{y}−{x}}=\sqrt[{\mathrm{4}}]{\mathrm{2}}\:\Leftrightarrow\:{y}=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$\:\:\:\:\:\mathrm{the}\:\mathrm{endpoint}\:\begin{pmatrix}{\mathrm{0}}\\{\mathrm{1}}\end{pmatrix}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{graph} \\ $$$$\:\:\:\:\:\mathrm{becomes}\:\begin{pmatrix}{−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}\\{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}\end{pmatrix}\:\:\Rightarrow\:\mathrm{defined}\:\mathrm{for}\:{x}\geqslant−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{a}\:\mathrm{part}\:\mathrm{of}\:\mathrm{a}\:\mathrm{parabola} \\ $$

Commented by bemath last updated on 21/Jan/21

just typo. (2^(1/4) /2^(1/2) ) = (1/2^(1/4) ) ⇒(√(x+y)) +(√(y−x)) = 2^(1/4)

$$\mathrm{just}\:\mathrm{typo}.\:\frac{\mathrm{2}^{\mathrm{1}/\mathrm{4}} }{\mathrm{2}^{\mathrm{1}/\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{1}/\mathrm{4}} }\:\Rightarrow\sqrt{\mathrm{x}+\mathrm{y}}\:+\sqrt{\mathrm{y}−\mathrm{x}}\:=\:\mathrm{2}^{\mathrm{1}/\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com