Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 129855 by liberty last updated on 20/Jan/21

 ϑ = ∫ (dx/((1+(√x) )^3 ))

$$\:\vartheta\:=\:\int\:\frac{{dx}}{\left(\mathrm{1}+\sqrt{{x}}\:\right)^{\mathrm{3}} } \\ $$

Answered by EDWIN88 last updated on 20/Jan/21

ϑ = ∫ (dx/(((√x))^3 (1+x^(−1/2) )^3 ))= ∫ (x^(−3/2) /((1+x^(−1/2) )^3 )) dx   let ϕ = 1+x^(−1/2)  →dϕ=−(1/2)x^(−3/2)  dx  ϑ = −2∫ (dϕ/ϕ^3 ) = −2∫ ϕ^(−3)  dϕ  ϕ=(1/ϕ^2 )+C = (1/(((((√x) +1)/( (√x))))^2 )) + C  ϕ=(x/(((√x) +1)^2 )) + C

$$\vartheta\:=\:\int\:\frac{\mathrm{dx}}{\left(\sqrt{\mathrm{x}}\right)^{\mathrm{3}} \left(\mathrm{1}+\mathrm{x}^{−\mathrm{1}/\mathrm{2}} \right)^{\mathrm{3}} }=\:\int\:\frac{\mathrm{x}^{−\mathrm{3}/\mathrm{2}} }{\left(\mathrm{1}+\mathrm{x}^{−\mathrm{1}/\mathrm{2}} \right)^{\mathrm{3}} }\:\mathrm{dx} \\ $$$$\:\mathrm{let}\:\varphi\:=\:\mathrm{1}+\mathrm{x}^{−\mathrm{1}/\mathrm{2}} \:\rightarrow\mathrm{d}\varphi=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{−\mathrm{3}/\mathrm{2}} \:\mathrm{dx} \\ $$$$\vartheta\:=\:−\mathrm{2}\int\:\frac{\mathrm{d}\varphi}{\varphi^{\mathrm{3}} }\:=\:−\mathrm{2}\int\:\varphi^{−\mathrm{3}} \:\mathrm{d}\varphi \\ $$$$\varphi=\frac{\mathrm{1}}{\varphi^{\mathrm{2}} }+\mathrm{C}\:=\:\frac{\mathrm{1}}{\left(\frac{\sqrt{\mathrm{x}}\:+\mathrm{1}}{\:\sqrt{\mathrm{x}}}\right)^{\mathrm{2}} }\:+\:\mathrm{C} \\ $$$$\varphi=\frac{\mathrm{x}}{\left(\sqrt{\mathrm{x}}\:+\mathrm{1}\right)^{\mathrm{2}} }\:+\:\mathrm{C}\: \\ $$

Answered by stelor last updated on 20/Jan/21

 let u =(√x)     so,  du=(1/(2(√x)))dx = du = (1/(2u))dx  v = ∫((2udu)/((1+u)^3 ))  where u = (√x)  let t = 1+u  so, du=dt  v =2∫(((t−1))/t^3 )dt where t = u−1= (√x)−1  v=2[∫((1/t^2 )−(1/t^3 ))dt] =2(−(1/t)+(1/(2t^2 )) + c )  v = 2(−(1/( (√x)−1))+(1/(2((√x)−1)^2 )) + c)  v= ((3−2(√x))/(((√x)−1)^2 )) + c

$$\:\mathrm{let}\:{u}\:=\sqrt{{x}}\:\:\:\:\:{so},\:\:{du}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}{dx}\:=\:{du}\:=\:\frac{\mathrm{1}}{\mathrm{2}{u}}{dx} \\ $$$${v}\:=\:\int\frac{\mathrm{2udu}}{\left(\mathrm{1}+\mathrm{u}\right)^{\mathrm{3}} }\:\:{where}\:{u}\:=\:\sqrt{{x}} \\ $$$${let}\:{t}\:=\:\mathrm{1}+{u}\:\:{so},\:\mathrm{du}=\mathrm{dt} \\ $$$${v}\:=\mathrm{2}\int\frac{\left({t}−\mathrm{1}\right)}{{t}^{\mathrm{3}} }{dt}\:{where}\:{t}\:=\:{u}−\mathrm{1}=\:\sqrt{{x}}−\mathrm{1} \\ $$$${v}=\mathrm{2}\left[\int\left(\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{3}} }\right){dt}\right]\:=\mathrm{2}\left(−\frac{\mathrm{1}}{{t}}+\frac{\mathrm{1}}{\mathrm{2}{t}^{\mathrm{2}} }\:+\:{c}\:\right) \\ $$$${v}\:=\:\mathrm{2}\left(−\frac{\mathrm{1}}{\:\sqrt{{x}}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}\left(\sqrt{{x}}−\mathrm{1}\right)^{\mathrm{2}} }\:+\:{c}\right) \\ $$$${v}=\:\frac{\mathrm{3}−\mathrm{2}\sqrt{{x}}}{\left(\sqrt{{x}}−\mathrm{1}\right)^{\mathrm{2}} }\:+\:{c} \\ $$

Commented by bemath last updated on 20/Jan/21

t = 1+u but t=u−1 ; ambiguous

$$\mathrm{t}\:=\:\mathrm{1}+\mathrm{u}\:\mathrm{but}\:\mathrm{t}=\mathrm{u}−\mathrm{1}\:;\:\mathrm{ambiguous}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com