Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 129825 by 0731619177 last updated on 19/Jan/21

Answered by Olaf last updated on 20/Jan/21

Let u_0  = 0 and u_n  = (√(2+(√(2+(√(2...)))))), n ≥ 1  u_(n+1)  = (√(2+u_n ))  By induction :  0 ≤ u_n  ≤ 2 ⇒ 0 ≤ u_(n+1)  ≤ 2  So let u_n  = 2cosθ_n  (u_0  = 0 ⇒ θ_0  = (π/2))  u_(n+1)  = (√(2+2cosθ_n )) = 2(√((1+cosθ_n )/2))  u_(n+1)  = 2(√(cos^2 (θ_n /2)))  = 2cos(θ_n /2) = 2cosθ_(n+1)   ⇒ θ_(n+1)  = (θ_n /2)  Finally, θ_n  = (θ_0 /2^n ) = (π/2^(n+1) ), u_n  = 2cos(π/2^(n+1) )    sin2α = 2sinαcosα  cosα = ((sin2α)/(2sinα))  ⇒ u_n  = 2cosθ_n = ((sin2θ_n )/(sinθ_n )) = ((sin(π/2^n ))/(sin(π/2^(n+1) )))  Π_(n=1) ^N (2/u_n ) = 2^N Π_(n=1) ^N ((sin(π/2^(n+1) ))/(sin(π/2^n ))) = 2^N ((sin(π/2^(N+1) ))/(sin(π/2)))  (telescopic product)  Π_(n=1) ^N (2/u_n ) = 2^N sin(π/2^(N+1) ) ∼_∞  2^N (π/2^(N+1) ) = (π/2) (1)    3!! = 6! = 720 (2)    (√(Γ(2))) = (√(1!)) = 1 (3)    With (1), (2) and (3) the result is :  {ln[−((π/2))]^(720) }^1  = 720.ln(π/2)

$$\mathrm{Let}\:{u}_{\mathrm{0}} \:=\:\mathrm{0}\:\mathrm{and}\:{u}_{{n}} \:=\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}...}}},\:{n}\:\geqslant\:\mathrm{1} \\ $$$${u}_{{n}+\mathrm{1}} \:=\:\sqrt{\mathrm{2}+{u}_{{n}} } \\ $$$$\mathrm{By}\:\mathrm{induction}\:: \\ $$$$\mathrm{0}\:\leqslant\:{u}_{{n}} \:\leqslant\:\mathrm{2}\:\Rightarrow\:\mathrm{0}\:\leqslant\:{u}_{{n}+\mathrm{1}} \:\leqslant\:\mathrm{2} \\ $$$$\mathrm{So}\:\mathrm{let}\:{u}_{{n}} \:=\:\mathrm{2cos}\theta_{{n}} \:\left({u}_{\mathrm{0}} \:=\:\mathrm{0}\:\Rightarrow\:\theta_{\mathrm{0}} \:=\:\frac{\pi}{\mathrm{2}}\right) \\ $$$${u}_{{n}+\mathrm{1}} \:=\:\sqrt{\mathrm{2}+\mathrm{2cos}\theta_{{n}} }\:=\:\mathrm{2}\sqrt{\frac{\mathrm{1}+\mathrm{cos}\theta_{{n}} }{\mathrm{2}}} \\ $$$${u}_{{n}+\mathrm{1}} \:=\:\mathrm{2}\sqrt{\mathrm{cos}^{\mathrm{2}} \frac{\theta_{{n}} }{\mathrm{2}}}\:\:=\:\mathrm{2cos}\frac{\theta_{{n}} }{\mathrm{2}}\:=\:\mathrm{2cos}\theta_{{n}+\mathrm{1}} \\ $$$$\Rightarrow\:\theta_{{n}+\mathrm{1}} \:=\:\frac{\theta_{{n}} }{\mathrm{2}} \\ $$$$\mathrm{Finally},\:\theta_{{n}} \:=\:\frac{\theta_{\mathrm{0}} }{\mathrm{2}^{{n}} }\:=\:\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} },\:{u}_{{n}} \:=\:\mathrm{2cos}\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} } \\ $$$$ \\ $$$$\mathrm{sin2}\alpha\:=\:\mathrm{2sin}\alpha\mathrm{cos}\alpha \\ $$$$\mathrm{cos}\alpha\:=\:\frac{\mathrm{sin2}\alpha}{\mathrm{2sin}\alpha} \\ $$$$\Rightarrow\:{u}_{{n}} \:=\:\mathrm{2cos}\theta_{{n}} =\:\frac{\mathrm{sin2}\theta_{{n}} }{\mathrm{sin}\theta_{{n}} }\:=\:\frac{\mathrm{sin}\frac{\pi}{\mathrm{2}^{{n}} }}{\mathrm{sin}\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{N}} {\prod}}\frac{\mathrm{2}}{{u}_{{n}} }\:=\:\mathrm{2}^{\mathrm{N}} \underset{{n}=\mathrm{1}} {\overset{\mathrm{N}} {\prod}}\frac{\mathrm{sin}\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }}{\mathrm{sin}\frac{\pi}{\mathrm{2}^{{n}} }}\:=\:\mathrm{2}^{\mathrm{N}} \frac{\mathrm{sin}\frac{\pi}{\mathrm{2}^{\mathrm{N}+\mathrm{1}} }}{\mathrm{sin}\frac{\pi}{\mathrm{2}}} \\ $$$$\left(\mathrm{telescopic}\:\mathrm{product}\right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{N}} {\prod}}\frac{\mathrm{2}}{{u}_{{n}} }\:=\:\mathrm{2}^{\mathrm{N}} \mathrm{sin}\frac{\pi}{\mathrm{2}^{\mathrm{N}+\mathrm{1}} }\:\underset{\infty} {\sim}\:\mathrm{2}^{\mathrm{N}} \frac{\pi}{\mathrm{2}^{\mathrm{N}+\mathrm{1}} }\:=\:\frac{\pi}{\mathrm{2}}\:\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\mathrm{3}!!\:=\:\mathrm{6}!\:=\:\mathrm{720}\:\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\sqrt{\Gamma\left(\mathrm{2}\right)}\:=\:\sqrt{\mathrm{1}!}\:=\:\mathrm{1}\:\left(\mathrm{3}\right) \\ $$$$ \\ $$$$\mathrm{With}\:\left(\mathrm{1}\right),\:\left(\mathrm{2}\right)\:\mathrm{and}\:\left(\mathrm{3}\right)\:\mathrm{the}\:\mathrm{result}\:\mathrm{is}\:: \\ $$$$\left\{\mathrm{ln}\left[−\left(\frac{\pi}{\mathrm{2}}\right)\right]^{\mathrm{720}} \right\}^{\mathrm{1}} \:=\:\mathrm{720}.\mathrm{ln}\frac{\pi}{\mathrm{2}} \\ $$

Commented by mr W last updated on 20/Jan/21

3!!≠(3!)!  3!!=3×1=3

$$\mathrm{3}!!\neq\left(\mathrm{3}!\right)! \\ $$$$\mathrm{3}!!=\mathrm{3}×\mathrm{1}=\mathrm{3} \\ $$

Commented by Olaf last updated on 20/Jan/21

Sir, why 3!! = 3×1 ?  It′s the first time I see this notation.

$$\mathrm{Sir},\:\mathrm{why}\:\mathrm{3}!!\:=\:\mathrm{3}×\mathrm{1}\:? \\ $$$$\mathrm{It}'\mathrm{s}\:\mathrm{the}\:\mathrm{first}\:\mathrm{time}\:\mathrm{I}\:\mathrm{see}\:\mathrm{this}\:\mathrm{notation}. \\ $$

Commented by Olaf last updated on 20/Jan/21

Dear mr W, my own calculator  gives : 3!! = (3!)! = 720

$$\mathrm{Dear}\:\mathrm{mr}\:\mathrm{W},\:\mathrm{my}\:\mathrm{own}\:\mathrm{calculator} \\ $$$$\mathrm{gives}\::\:\mathrm{3}!!\:=\:\left(\mathrm{3}!\right)!\:=\:\mathrm{720} \\ $$

Commented by Olaf last updated on 20/Jan/21

Commented by mr W last updated on 20/Jan/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com