Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 129805 by mnjuly1970 last updated on 19/Jan/21

             ... nice       calculus ...   please calculate :::       I:= ∫_0 ^( 1) {(1/( (x)^(1/6) )) }dx      notice: {x} is the fractionl of ′′ x ′′.                      ................

$$\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:\:\:\:\:\:{calculus}\:... \\ $$$$\:{please}\:{calculate}\:::: \\ $$$$\:\:\:\:\:\mathrm{I}:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\frac{\mathrm{1}}{\:\sqrt[{\mathrm{6}}]{{x}}}\:\right\}{dx} \\ $$$$\:\:\:\:{notice}:\:\left\{{x}\right\}\:{is}\:{the}\:{fractionl}\:{of}\:''\:{x}\:''. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:................ \\ $$

Answered by mindispower last updated on 19/Jan/21

let u=(1/(^6 (√x)))⇒x=(1/u^6 )⇒dx=((−6)/u^7 )du  ⇔6∫_1 ^∞ {u}.(du/u^7 )  =6Σ_(k≥1) ∫_k ^(k+1) [u−k].(du/u^7 )  =6∫_1 ^∞ (du/u^6 )−6Σ_(k≥1) ∫_k ^(k+1) (k/u^7 )du  =(6/5)+Σ_(k≥1) [(k/u^6 )]_k ^(k+1) =(6/5)+Σ_(k≥1) (k/((k+1)^6 ))−(1/k^5 )  =(6/5)+Σ_(k≥1) ((1/((k+1)^5 ))−(1/k^5 ))−(1/((k+1)^6 )))  =(6/5)−1−ζ(6)+1=(6/5)−ζ(6)=(6/5)−(π^6 /(945))

$${let}\:{u}=\frac{\mathrm{1}}{\:^{\mathrm{6}} \sqrt{{x}}}\Rightarrow{x}=\frac{\mathrm{1}}{{u}^{\mathrm{6}} }\Rightarrow{dx}=\frac{−\mathrm{6}}{{u}^{\mathrm{7}} }{du} \\ $$$$\Leftrightarrow\mathrm{6}\int_{\mathrm{1}} ^{\infty} \left\{{u}\right\}.\frac{{du}}{{u}^{\mathrm{7}} } \\ $$$$=\mathrm{6}\underset{{k}\geqslant\mathrm{1}} {\sum}\int_{{k}} ^{{k}+\mathrm{1}} \left[{u}−{k}\right].\frac{{du}}{{u}^{\mathrm{7}} } \\ $$$$=\mathrm{6}\int_{\mathrm{1}} ^{\infty} \frac{{du}}{{u}^{\mathrm{6}} }−\mathrm{6}\underset{{k}\geqslant\mathrm{1}} {\sum}\int_{{k}} ^{{k}+\mathrm{1}} \frac{{k}}{{u}^{\mathrm{7}} }{du} \\ $$$$=\frac{\mathrm{6}}{\mathrm{5}}+\underset{{k}\geqslant\mathrm{1}} {\sum}\left[\frac{{k}}{{u}^{\mathrm{6}} }\right]_{{k}} ^{{k}+\mathrm{1}} =\frac{\mathrm{6}}{\mathrm{5}}+\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{{k}}{\left({k}+\mathrm{1}\right)^{\mathrm{6}} }−\frac{\mathrm{1}}{{k}^{\mathrm{5}} } \\ $$$$\left.=\frac{\mathrm{6}}{\mathrm{5}}+\underset{{k}\geqslant\mathrm{1}} {\sum}\left(\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{5}} }−\frac{\mathrm{1}}{{k}^{\mathrm{5}} }\right)−\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{6}} }\right) \\ $$$$=\frac{\mathrm{6}}{\mathrm{5}}−\mathrm{1}−\zeta\left(\mathrm{6}\right)+\mathrm{1}=\frac{\mathrm{6}}{\mathrm{5}}−\zeta\left(\mathrm{6}\right)=\frac{\mathrm{6}}{\mathrm{5}}−\frac{\pi^{\mathrm{6}} }{\mathrm{945}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com