Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 129672 by Dwaipayan Shikari last updated on 17/Jan/21

∫(dx/((1+x^(97) )^7 ))

$$\int\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{97}} \right)^{\mathrm{7}} } \\ $$

Answered by mindispower last updated on 17/Jan/21

u=x^(97) ⇒dx=(u^(−((96)/(97))) /(97))du  =∫(u^(−((96)/(97))) /(97(1+u)^7 ))du...E  ∫(x^s /(1+x))dx=∫((x^s −x^(s+1) )/(1−x^2 ))dx...F  x^2 =t  =(1/2)∫(1/(1−t))(t^(2s−(1/2)) −t^(2s+(3/2)) )dt  =(1/2)∫(((1−t^(2s+(3/2)) )/(1−t))−((1−t^(2s−(1/2)) )/(1−t)))  =(1/2)(Ψ(2s+(5/2))−Ψ(2s+(1/2)))  iintegrate by part 6 time..E&F  give us answr

$${u}={x}^{\mathrm{97}} \Rightarrow{dx}=\frac{{u}^{−\frac{\mathrm{96}}{\mathrm{97}}} }{\mathrm{97}}{du} \\ $$$$=\int\frac{{u}^{−\frac{\mathrm{96}}{\mathrm{97}}} }{\mathrm{97}\left(\mathrm{1}+{u}\right)^{\mathrm{7}} }{du}...{E} \\ $$$$\int\frac{{x}^{{s}} }{\mathrm{1}+{x}}{dx}=\int\frac{{x}^{{s}} −{x}^{{s}+\mathrm{1}} }{\mathrm{1}−{x}^{\mathrm{2}} }{dx}...{F} \\ $$$${x}^{\mathrm{2}} ={t} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{1}}{\mathrm{1}−{t}}\left({t}^{\mathrm{2}{s}−\frac{\mathrm{1}}{\mathrm{2}}} −{t}^{\mathrm{2}{s}+\frac{\mathrm{3}}{\mathrm{2}}} \right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\frac{\mathrm{1}−{t}^{\mathrm{2}{s}+\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{1}−{t}}−\frac{\mathrm{1}−{t}^{\mathrm{2}{s}−\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}−{t}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\Psi\left(\mathrm{2}{s}+\frac{\mathrm{5}}{\mathrm{2}}\right)−\Psi\left(\mathrm{2}{s}+\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$${iintegrate}\:{by}\:{part}\:\mathrm{6}\:{time}..{E\&F} \\ $$$${give}\:{us}\:{answr} \\ $$

Commented by Dwaipayan Shikari last updated on 17/Jan/21

Great sir !Can it be fransformed into Hypergeometric   functions?

$${Great}\:{sir}\:!{Can}\:{it}\:{be}\:{fransformed}\:{into}\:{Hypergeometric}\: \\ $$$${functions}? \\ $$

Commented by mindispower last updated on 18/Jan/21

yes  (d^6 /du^6 ).(1/((1+u)))=((6!)/((1+u)^7 ))=(d^6 /(du^6  ))Σ_(k≥0) (−1)^k u^k   =Σ_(k≥6) (−1)^k k(k−1)...(k−6).u^(k−6)   =Σ_(k≥0) (−1)^k .(k+6)......k.u^k   ∫(dx/((1+x^(97) )^7 ))=∫Σ_(k≥0) (−x^(97) )^k .(((k+6)...k)/1)dx,∀∣x∣<1  =Σ_(k≥0) (((−1)^k x^(97k+1) .k...(k+6))/((97k+1)))+c  =x.(1+Σ_(k≥1) (((−x^(97) )^k .(k+6)!)/((k−1)!.(k+(1/(97))))))  =x(1+Σ_(k≥0) (((−x)^(97k+97) .(k+7)!)/(k!.(k+((98)/(97))))))  =x(1+x^(97) .Σ_(k≥0) (((−x^(97) )^k )/(k!)).(((8)_k .((1/(97)))_k )/((((98)/(97)))_k )))  =x+x^(98) ._2 F_1 (8,(1/(97));((98)/(97));−x^(97) )+c

$${yes} \\ $$$$\frac{{d}^{\mathrm{6}} }{{du}^{\mathrm{6}} }.\frac{\mathrm{1}}{\left(\mathrm{1}+{u}\right)}=\frac{\mathrm{6}!}{\left(\mathrm{1}+{u}\right)^{\mathrm{7}} }=\frac{{d}^{\mathrm{6}} }{{du}^{\mathrm{6}} \:}\underset{{k}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{k}} {u}^{{k}} \\ $$$$=\underset{{k}\geqslant\mathrm{6}} {\sum}\left(−\mathrm{1}\right)^{{k}} {k}\left({k}−\mathrm{1}\right)...\left({k}−\mathrm{6}\right).{u}^{{k}−\mathrm{6}} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{k}} .\left({k}+\mathrm{6}\right)......{k}.{u}^{{k}} \\ $$$$\int\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{97}} \right)^{\mathrm{7}} }=\int\underset{{k}\geqslant\mathrm{0}} {\sum}\left(−{x}^{\mathrm{97}} \right)^{{k}} .\frac{\left({k}+\mathrm{6}\right)...{k}}{\mathrm{1}}{dx},\forall\mid{x}\mid<\mathrm{1} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} {x}^{\mathrm{97}{k}+\mathrm{1}} .{k}...\left({k}+\mathrm{6}\right)}{\left(\mathrm{97}{k}+\mathrm{1}\right)}+{c} \\ $$$$={x}.\left(\mathrm{1}+\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−{x}^{\mathrm{97}} \right)^{{k}} .\left({k}+\mathrm{6}\right)!}{\left({k}−\mathrm{1}\right)!.\left({k}+\frac{\mathrm{1}}{\left.\mathrm{97}\right)}\right)}\right. \\ $$$$={x}\left(\mathrm{1}+\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−{x}\right)^{\mathrm{97}{k}+\mathrm{97}} .\left({k}+\mathrm{7}\right)!}{{k}!.\left({k}+\frac{\mathrm{98}}{\mathrm{97}}\right)}\right) \\ $$$$={x}\left(\mathrm{1}+{x}^{\mathrm{97}} .\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−{x}^{\mathrm{97}} \right)^{{k}} }{{k}!}.\frac{\left(\mathrm{8}\right)_{{k}} .\left(\frac{\mathrm{1}}{\mathrm{97}}\right)_{{k}} }{\left(\frac{\mathrm{98}}{\mathrm{97}}\right)_{{k}} }\right) \\ $$$$={x}+{x}^{\mathrm{98}} ._{\mathrm{2}} {F}_{\mathrm{1}} \left(\mathrm{8},\frac{\mathrm{1}}{\mathrm{97}};\frac{\mathrm{98}}{\mathrm{97}};−{x}^{\mathrm{97}} \right)+{c} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com