Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 129110 by math178 last updated on 12/Jan/21

Commented by math178 last updated on 12/Jan/21

differential equation general solver ? thank you

$${differential}\:{equation}\:{general}\:{solver}\:?\:{thank}\:{you} \\ $$

Answered by mr W last updated on 13/Jan/21

u=((2x+y−1)/(x−2))  y=(x−2)u+1−2x  y′=u+(x−2)u′−2=u^2   (x−2)u′=u^2 −u+2  (du/(u^2 −u+2))=(dx/(x−2))  (2/( (√7))) tan^(−1) ((2u−1)/( (√7)))=ln (x−2)+C  u=((√7)/2) tan [((√7)/2)ln (x−2)+C]+(1/2)  ⇒((2x+y−1)/(x−2))=((√7)/2) tan [((√7)/2)ln (x−2)+C]+(1/2)

$${u}=\frac{\mathrm{2}{x}+{y}−\mathrm{1}}{{x}−\mathrm{2}} \\ $$$${y}=\left({x}−\mathrm{2}\right){u}+\mathrm{1}−\mathrm{2}{x} \\ $$$${y}'={u}+\left({x}−\mathrm{2}\right){u}'−\mathrm{2}={u}^{\mathrm{2}} \\ $$$$\left({x}−\mathrm{2}\right){u}'={u}^{\mathrm{2}} −{u}+\mathrm{2} \\ $$$$\frac{{du}}{{u}^{\mathrm{2}} −{u}+\mathrm{2}}=\frac{{dx}}{{x}−\mathrm{2}} \\ $$$$\frac{\mathrm{2}}{\:\sqrt{\mathrm{7}}}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{u}−\mathrm{1}}{\:\sqrt{\mathrm{7}}}=\mathrm{ln}\:\left({x}−\mathrm{2}\right)+{C} \\ $$$${u}=\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\:\mathrm{tan}\:\left[\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\mathrm{ln}\:\left({x}−\mathrm{2}\right)+{C}\right]+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{2}{x}+{y}−\mathrm{1}}{{x}−\mathrm{2}}=\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\:\mathrm{tan}\:\left[\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\mathrm{ln}\:\left({x}−\mathrm{2}\right)+{C}\right]+\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com