Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 129088 by Gulnoza last updated on 12/Jan/21

Answered by MJS_new last updated on 12/Jan/21

4^(2log_4  x) =(4^(log_4  x) )^2 =x^2 =25  ⇒ x=±5

$$\mathrm{4}^{\mathrm{2log}_{\mathrm{4}} \:{x}} =\left(\mathrm{4}^{\mathrm{log}_{\mathrm{4}} \:{x}} \right)^{\mathrm{2}} ={x}^{\mathrm{2}} =\mathrm{25} \\ $$$$\Rightarrow\:{x}=\pm\mathrm{5} \\ $$

Commented by hknkrc46 last updated on 12/Jan/21

log _m n =  { ((m ∈ R^+  \ {1})),((n ∈ R^+ )) :} ⇒  { ((x = 5)),((x ≠ −5)) :}

$$\mathrm{log}\:_{\boldsymbol{{m}}} \boldsymbol{{n}}\:=\:\begin{cases}{\boldsymbol{{m}}\:\in\:\mathbb{R}^{+} \:\backslash\:\left\{\mathrm{1}\right\}}\\{\boldsymbol{{n}}\:\in\:\mathbb{R}^{+} }\end{cases}\:\Rightarrow\:\begin{cases}{\boldsymbol{{x}}\:=\:\mathrm{5}}\\{\boldsymbol{{x}}\:\neq\:−\mathrm{5}}\end{cases} \\ $$

Commented by MJS_new last updated on 12/Jan/21

x∈C  ln (−5) =ln 5 +iπ  4^y =e^(yln 4) =       [y=2((ln x)/(ln 4))]  =e^(2ln x) =       [x=−5]  =e^(2ln 5 +2πi) =e^(2ln 5) e^(2πi) =       [e^(2πi) =1]  =e^(2ln 5) =(e^(ln 5) )^2 =5^2 =25

$${x}\in\mathbb{C} \\ $$$$\mathrm{ln}\:\left(−\mathrm{5}\right)\:=\mathrm{ln}\:\mathrm{5}\:+\mathrm{i}\pi \\ $$$$\mathrm{4}^{{y}} =\mathrm{e}^{{y}\mathrm{ln}\:\mathrm{4}} = \\ $$$$\:\:\:\:\:\left[{y}=\mathrm{2}\frac{\mathrm{ln}\:{x}}{\mathrm{ln}\:\mathrm{4}}\right] \\ $$$$=\mathrm{e}^{\mathrm{2ln}\:{x}} = \\ $$$$\:\:\:\:\:\left[{x}=−\mathrm{5}\right] \\ $$$$=\mathrm{e}^{\mathrm{2ln}\:\mathrm{5}\:+\mathrm{2}\pi\mathrm{i}} =\mathrm{e}^{\mathrm{2ln}\:\mathrm{5}} \mathrm{e}^{\mathrm{2}\pi\mathrm{i}} = \\ $$$$\:\:\:\:\:\left[\mathrm{e}^{\mathrm{2}\pi\mathrm{i}} =\mathrm{1}\right] \\ $$$$=\mathrm{e}^{\mathrm{2ln}\:\mathrm{5}} =\left(\mathrm{e}^{\mathrm{ln}\:\mathrm{5}} \right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} =\mathrm{25} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com