Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 129047 by Dwaipayan Shikari last updated on 12/Jan/21

1+(1/2)((1/(2.1!)))^2 +(1/2^2 )(((1.3)/(2^2 .2!)))^2 +(1/2^3 )(((1.3.5)/(2^3 .3!)))^2 +...=((√π)/(Γ^2 ((3/4))))

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}.\mathrm{1}!}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\left(\frac{\mathrm{1}.\mathrm{3}}{\mathrm{2}^{\mathrm{2}} .\mathrm{2}!}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}^{\mathrm{3}} .\mathrm{3}!}\right)^{\mathrm{2}} +...=\frac{\sqrt{\pi}}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)} \\ $$

Answered by mindispower last updated on 12/Jan/21

1+Σ_(n≥1) (((Π_(k=0) ^(n−1) (1+2k))^2 )/(2^n (2^n .n!)^2 ))=S  =1+Σ_(n≥1) ((2^(2n) Π_(k=0) ^(n−1) (k+(1/2))_n ^2 )/(2^n .2^(2n) .n!)).(1/(n!))=1+Σ_(k≥1) ((((1/2))_n ((1/2))_n )/((1)_n )).((((1/2))^n )/(n!))  =_2 F_1 ((1/2),(1/2);1;[(1/2)])  Baily′s theorem _2 F_1 (a,1−a;c;(1/2))=((Γ((c/2))Γ(((1+c)/2)))/(Γ(((c+a)/2))Γ(((c+1−a)/2))))  we get S=((Γ((1/2))Γ(1))/(Γ((3/4))Γ((3/4))))=((√π)/(Γ^2 ((3/4))))

$$\mathrm{1}+\underset{\boldsymbol{{n}}\geqslant\mathrm{1}} {\sum}\frac{\left(\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{1}+\mathrm{2}\boldsymbol{{k}}\right)\right)^{\mathrm{2}} }{\mathrm{2}^{{n}} \left(\mathrm{2}^{{n}} .{n}!\right)^{\mathrm{2}} }={S} \\ $$$$=\mathrm{1}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{2}^{\mathrm{2}{n}} \underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({k}+\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} ^{\mathrm{2}} }{\mathrm{2}^{{n}} .\mathrm{2}^{\mathrm{2}{n}} .{n}!}.\frac{\mathrm{1}}{{n}!}=\mathrm{1}+\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} }{\left(\mathrm{1}\right)_{{n}} }.\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} }{{n}!} \\ $$$$=_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\mathrm{1};\left[\frac{\mathrm{1}}{\mathrm{2}}\right]\right) \\ $$$${Baily}'{s}\:{theorem}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left({a},\mathrm{1}−{a};{c};\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\Gamma\left(\frac{{c}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}+{c}}{\mathrm{2}}\right)}{\Gamma\left(\frac{{c}+{a}}{\mathrm{2}}\right)\Gamma\left(\frac{{c}+\mathrm{1}−{a}}{\mathrm{2}}\right)} \\ $$$${we}\:{get}\:{S}=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}\right)}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}=\frac{\sqrt{\pi}}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)} \\ $$

Commented by Dwaipayan Shikari last updated on 12/Jan/21

I didn′t know what is  Bailey′s Theorem. Thanking you   I found it using ((Γ(c))/(Γ(c−b)Γ(b)))∫_0 ^1 t^(b−1) (1−t)^(c−b−1) (1−(t/2))^(−a) dt  =((2^a Γ(c))/(Γ(c−b)Γ(b)))∫_0 ^1 (1−t)^(b−1) t^(c−b−1) (1+t)^(−a) dt

$${I}\:{didn}'{t}\:{know}\:{what}\:{is}\:\:{Bailey}'{s}\:{Theorem}.\:{Thanking}\:{you}\: \\ $$$${I}\:{found}\:{it}\:{using}\:\frac{\Gamma\left({c}\right)}{\Gamma\left({c}−{b}\right)\Gamma\left({b}\right)}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{b}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{c}−{b}−\mathrm{1}} \left(\mathrm{1}−\frac{{t}}{\mathrm{2}}\right)^{−{a}} {dt} \\ $$$$=\frac{\mathrm{2}^{{a}} \Gamma\left({c}\right)}{\Gamma\left({c}−{b}\right)\Gamma\left({b}\right)}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{b}−\mathrm{1}} {t}^{{c}−{b}−\mathrm{1}} \left(\mathrm{1}+{t}\right)^{−{a}} {dt}\:\:\: \\ $$

Commented by mindispower last updated on 12/Jan/21

yes symetrie x,1−x,

$${yes}\:{symetrie}\:{x},\mathrm{1}−{x}, \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com