Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 129019 by bramlexs22 last updated on 12/Jan/21

 Find the value of    3(sin x−cos x)^4 +6(sin x+cos x)^2 +   4(sin^6 x+cos^6 x).

$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\mathrm{3}\left(\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{4}} +\mathrm{6}\left(\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{2}} + \\ $$$$\:\mathrm{4}\left(\mathrm{sin}\:^{\mathrm{6}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{6}} \mathrm{x}\right). \\ $$

Answered by MJS_new last updated on 12/Jan/21

3(s−(√(1−s^2 )))^4 +6(s+(√(1−s^2 )))^2 +4(s^6 +(1−s^2 )^3 )=  =−12s(√(1−s^2 ))−12s^4 +12s^2 +3+      +12s(√(1−s^2 ))                           +6+                                +12s^4 −12s^2 +4=13

$$\mathrm{3}\left({s}−\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }\right)^{\mathrm{4}} +\mathrm{6}\left({s}+\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }\right)^{\mathrm{2}} +\mathrm{4}\left({s}^{\mathrm{6}} +\left(\mathrm{1}−{s}^{\mathrm{2}} \right)^{\mathrm{3}} \right)= \\ $$$$=−\mathrm{12}{s}\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }−\mathrm{12}{s}^{\mathrm{4}} +\mathrm{12}{s}^{\mathrm{2}} +\mathrm{3}+ \\ $$$$\:\:\:\:+\mathrm{12}{s}\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{6}+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{12}{s}^{\mathrm{4}} −\mathrm{12}{s}^{\mathrm{2}} +\mathrm{4}=\mathrm{13} \\ $$

Commented by bramlexs22 last updated on 12/Jan/21

amazing prof

$$\mathrm{amazing}\:\mathrm{prof} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com