Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 128954 by mathmax by abdo last updated on 11/Jan/21

calculate  f(λ) =∫_0 ^1 ln(x^4  +λ^4 )dx   with λ>0 then find the value of  ∫_0 ^1 ln(1+x^4 )dx

$$\mathrm{calculate}\:\:\mathrm{f}\left(\lambda\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{x}^{\mathrm{4}} \:+\lambda^{\mathrm{4}} \right)\mathrm{dx}\:\:\:\mathrm{with}\:\lambda>\mathrm{0}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} \right)\mathrm{dx} \\ $$

Answered by Lordose last updated on 16/Jan/21

    f(λ) = ∫_0 ^( 1) ln(x^4 +λ^4 )dx = ∫_0 ^( 1) ln(λ^4 (((x/λ))^4 +1))dx  f(λ) = 4∫_0 ^( 1) ln(λ)dx + ∫_0 ^( 1) ln(1+(x^4 /λ^4 ))dx  f(λ) = 4ln(λ) + Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^( 1) ((x/λ))^(4n) dx   f(λ) = 4ln(λ) + Σ_(n=1) ^∞ (((−1)^(n−1) )/(n(4n+1)λ^(4n) ))  Ω = ∫_0 ^( 1) ln(1+x^4 )dx = 4ln(1) + Σ_(n=1) ^∞ (((−1))/(n(4n+1)))  Ω = Σ_(n=1) ^∞ (((−1)^(n−1) )/(n(4n+1))) = (π/( (√2))) − 4 + ln(2) + (√2)coth^(−1) ((√2))

$$ \\ $$ $$ \\ $$ $$\mathrm{f}\left(\lambda\right)\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{ln}\left(\mathrm{x}^{\mathrm{4}} +\lambda^{\mathrm{4}} \right)\mathrm{dx}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{ln}\left(\lambda^{\mathrm{4}} \left(\left(\frac{\mathrm{x}}{\lambda}\right)^{\mathrm{4}} +\mathrm{1}\right)\right)\mathrm{dx} \\ $$ $$\mathrm{f}\left(\lambda\right)\:=\:\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{ln}\left(\lambda\right)\mathrm{dx}\:+\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{x}^{\mathrm{4}} }{\lambda^{\mathrm{4}} }\right)\mathrm{dx} \\ $$ $$\mathrm{f}\left(\lambda\right)\:=\:\mathrm{4ln}\left(\lambda\right)\:+\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\mathrm{n}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{\mathrm{x}}{\lambda}\right)^{\mathrm{4n}} \mathrm{dx}\: \\ $$ $$\mathrm{f}\left(\lambda\right)\:=\:\mathrm{4ln}\left(\lambda\right)\:+\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\mathrm{n}\left(\mathrm{4n}+\mathrm{1}\right)\lambda^{\mathrm{4n}} } \\ $$ $$\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} \right)\mathrm{dx}\:=\:\mathrm{4ln}\left(\mathrm{1}\right)\:+\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)}{\mathrm{n}\left(\mathrm{4n}+\mathrm{1}\right)} \\ $$ $$\Omega\:=\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\mathrm{n}\left(\mathrm{4n}+\mathrm{1}\right)}\:=\:\frac{\pi}{\:\sqrt{\mathrm{2}}}\:−\:\mathrm{4}\:+\:\mathrm{ln}\left(\mathrm{2}\right)\:+\:\sqrt{\mathrm{2}}\mathrm{coth}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com