Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 128907 by bramlexs22 last updated on 11/Jan/21

 Given U_n  =  { ((2n+1 ; n even)),((3n+3 ; n odd)) :}  The value of U_3 +U_6 +U_7 +U_(10) +U_(11) +   U_(14) +...+U_(27) +U_(28) =?

$$\:\mathrm{Given}\:\mathrm{U}_{\mathrm{n}} \:=\:\begin{cases}{\mathrm{2n}+\mathrm{1}\:;\:\mathrm{n}\:\mathrm{even}}\\{\mathrm{3n}+\mathrm{3}\:;\:\mathrm{n}\:\mathrm{odd}}\end{cases} \\ $$$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{U}_{\mathrm{3}} +\mathrm{U}_{\mathrm{6}} +\mathrm{U}_{\mathrm{7}} +\mathrm{U}_{\mathrm{10}} +\mathrm{U}_{\mathrm{11}} + \\ $$$$\:\mathrm{U}_{\mathrm{14}} +...+\mathrm{U}_{\mathrm{27}} +\mathrm{U}_{\mathrm{28}} =? \\ $$

Answered by Olaf last updated on 11/Jan/21

  S = Σ_(k=3) ^(k=28) U_k   S = Σ_(n=1) ^(n=13) [U_(2n+1) +U_(2n+2) ]  S = Σ_(n=1) ^(n=13) [(3(2n+1)+3)+(2(2n+2)+1)]  S = Σ_(n=1) ^(n=13) (10n+11)  S = 10((13×14)/2)+11×13 = 910+143 = 1053

$$ \\ $$$$\mathrm{S}\:=\:\underset{{k}=\mathrm{3}} {\overset{{k}=\mathrm{28}} {\sum}}\mathrm{U}_{{k}} \\ $$$$\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{{n}=\mathrm{13}} {\sum}}\left[\mathrm{U}_{\mathrm{2}{n}+\mathrm{1}} +\mathrm{U}_{\mathrm{2}{n}+\mathrm{2}} \right] \\ $$$$\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{{n}=\mathrm{13}} {\sum}}\left[\left(\mathrm{3}\left(\mathrm{2}{n}+\mathrm{1}\right)+\mathrm{3}\right)+\left(\mathrm{2}\left(\mathrm{2}{n}+\mathrm{2}\right)+\mathrm{1}\right)\right] \\ $$$$\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{{n}=\mathrm{13}} {\sum}}\left(\mathrm{10}{n}+\mathrm{11}\right) \\ $$$$\mathrm{S}\:=\:\mathrm{10}\frac{\mathrm{13}×\mathrm{14}}{\mathrm{2}}+\mathrm{11}×\mathrm{13}\:=\:\mathrm{910}+\mathrm{143}\:=\:\mathrm{1053} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com