Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 128712 by Study last updated on 09/Jan/21

if P(x−1)=2x^3 ∙Q(x)+x^2   find ((P(1)−4)/(Q(x)))=??

$${if}\:{P}\left({x}−\mathrm{1}\right)=\mathrm{2}{x}^{\mathrm{3}} \centerdot{Q}\left({x}\right)+{x}^{\mathrm{2}} \\ $$$${find}\:\frac{{P}\left(\mathrm{1}\right)−\mathrm{4}}{{Q}\left({x}\right)}=?? \\ $$

Commented by Adel last updated on 13/Jan/21

p(1)=p(2−1)=2×2^3 ×Q(x)+2^2   p(1)=16Q(X)+4  P(1)−4=16Q(X)  ((P(1)−4)/(Q(X)))=16

$$\mathrm{p}\left(\mathrm{1}\right)=\boldsymbol{\mathrm{p}}\left(\mathrm{2}−\mathrm{1}\right)=\mathrm{2}×\mathrm{2}^{\mathrm{3}} ×\boldsymbol{\mathrm{Q}}\left(\mathrm{x}\right)+\mathrm{2}^{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{p}}\left(\mathrm{1}\right)=\mathrm{16}\boldsymbol{\mathrm{Q}}\left(\mathrm{X}\right)+\mathrm{4} \\ $$$$\mathrm{P}\left(\mathrm{1}\right)−\mathrm{4}=\mathrm{16Q}\left(\mathrm{X}\right) \\ $$$$\frac{\mathrm{P}\left(\mathrm{1}\right)−\mathrm{4}}{\mathrm{Q}\left(\mathrm{X}\right)}=\mathrm{16} \\ $$

Answered by essafty last updated on 09/Jan/21

16

$$\mathrm{16} \\ $$$$ \\ $$

Commented by Study last updated on 09/Jan/21

what is the practice??

$${what}\:{is}\:{the}\:{practice}?? \\ $$

Answered by hknkrc46 last updated on 09/Jan/21

Commented by Study last updated on 10/Jan/21

how ((16Q(2))/(Q(x)))=16 ??? or ((Q(2))/(Q(x)))=1 ??   why??

$${how}\:\frac{\mathrm{16}{Q}\left(\mathrm{2}\right)}{{Q}\left({x}\right)}=\mathrm{16}\:???\:{or}\:\frac{{Q}\left(\mathrm{2}\right)}{{Q}\left({x}\right)}=\mathrm{1}\:??\: \\ $$$${why}?? \\ $$

Commented by Study last updated on 11/Jan/21

why??

$${why}?? \\ $$

Commented by Study last updated on 11/Jan/21

plz ans me

$${plz}\:{ans}\:{me} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com