Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 128689 by bemath last updated on 09/Jan/21

 (x^3 +y^3 ) dx = 3xy^2  dy

$$\:\left(\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} \right)\:\mathrm{dx}\:=\:\mathrm{3xy}^{\mathrm{2}} \:\mathrm{dy}\: \\ $$

Answered by liberty last updated on 09/Jan/21

 (dy/dx) = ((x^3 +y^3 )/(3xy^2 )) ⇒ (dy/dx) = (1/3)x^2 y^(−2)  + (y/(3x))   let v = y^3  ⇒ (dv/dx) = 3y^2  (dy/dx) or (dy/dx) = (1/3)y^(−2)  (dv/dx)   then (1/3)y^(−2)  (dv/dx) = (1/3)x^2 y^(−2)  + (y/(3x))   ⇔ (dv/dx) = x^2 +(y^3 /x) ; (dv/dx) − (v/x) = x^2   put integrating factor μ = e^(∫−(dx/x))  = (1/x)  we get v = ((∫ x^2 ((1/x)) dx + C)/(((1/x))))   v = x ((1/2)x^2  +C)⇒ y= (((1/2)x^3 +Cx))^(1/3)   ⇔ y = (1/2) ((4x^3 +λx))^(1/3)  .

$$\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} }{\mathrm{3xy}^{\mathrm{2}} }\:\Rightarrow\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}^{\mathrm{2}} \mathrm{y}^{−\mathrm{2}} \:+\:\frac{\mathrm{y}}{\mathrm{3x}} \\ $$$$\:\mathrm{let}\:\mathrm{v}\:=\:\mathrm{y}^{\mathrm{3}} \:\Rightarrow\:\frac{\mathrm{dv}}{\mathrm{dx}}\:=\:\mathrm{3y}^{\mathrm{2}} \:\frac{\mathrm{dy}}{\mathrm{dx}}\:\mathrm{or}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{y}^{−\mathrm{2}} \:\frac{\mathrm{dv}}{\mathrm{dx}} \\ $$$$\:\mathrm{then}\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{y}^{−\mathrm{2}} \:\frac{\mathrm{dv}}{\mathrm{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}^{\mathrm{2}} \mathrm{y}^{−\mathrm{2}} \:+\:\frac{\mathrm{y}}{\mathrm{3x}} \\ $$$$\:\Leftrightarrow\:\frac{\mathrm{dv}}{\mathrm{dx}}\:=\:\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{y}^{\mathrm{3}} }{\mathrm{x}}\:;\:\frac{\mathrm{dv}}{\mathrm{dx}}\:−\:\frac{\mathrm{v}}{\mathrm{x}}\:=\:\mathrm{x}^{\mathrm{2}} \\ $$$$\mathrm{put}\:\mathrm{integrating}\:\mathrm{factor}\:\mu\:=\:\mathrm{e}^{\int−\frac{\mathrm{dx}}{\mathrm{x}}} \:=\:\frac{\mathrm{1}}{\mathrm{x}} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{v}\:=\:\frac{\int\:\mathrm{x}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:\mathrm{dx}\:+\:\mathrm{C}}{\left(\frac{\mathrm{1}}{\mathrm{x}}\right)} \\ $$$$\:\mathrm{v}\:=\:\mathrm{x}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \:+\mathrm{C}\right)\Rightarrow\:\mathrm{y}=\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{3}} +\mathrm{Cx}} \\ $$$$\Leftrightarrow\:\mathrm{y}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\sqrt[{\mathrm{3}}]{\mathrm{4x}^{\mathrm{3}} +\lambda\mathrm{x}}\:.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com