Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 128617 by ajfour last updated on 08/Jan/21

Commented by ajfour last updated on 08/Jan/21

Express x in terms of t, then  use it to solve x^3 =x+c.

$${Express}\:{x}\:{in}\:{terms}\:{of}\:{t},\:{then} \\ $$$${use}\:{it}\:{to}\:{solve}\:{x}^{\mathrm{3}} ={x}+{c}. \\ $$

Answered by ajfour last updated on 09/Jan/21

x=p+(√(t^2 −q^2 ))  Now    x^3 =x+c   ⇒  p^3 +(t^2 −q^2 )(√(t^2 −q^2 ))  +3p(t^2 −q^2 )+3p^2 (√(t^2 −q^2 ))  −p−(√(t^2 −q^2 ))=c   Let    3p^2 −q^2 =1    ⇒  p^3 +t^2 (√(t^2 +1−3p^2 ))+3p(t^2 +1−3p^2 )  −p−c=0  ⇒   [8p^3 −(2+3t^2 )p+c]^2 =t^4 (t^2 +1−3p^2 )  let  t^2 =mp^2 +s  ⇒ [8p^3 −2p−3p(mp^2 +s)+c]^2         = (mp^2 +s)^2 (mp^2 +s+1−3p^2 )  ⇒  let   s=−1  ⇒  8p^3 −2p−3p(mp^2 −1)+c         =(√(m−3))(mp^2 −1)p  ⇒  (8−3m−m(√(m−3)))p^3        +(1+(√(m−3)))p+c = 0  let   (1+(√(m−3)))=r  r^3 =1+(m−3)(√(m−3))            +3(√(m−3))+3(m−3)    = −8+m(√(m−3))+3m  .....

$${x}={p}+\sqrt{{t}^{\mathrm{2}} −{q}^{\mathrm{2}} } \\ $$$${Now}\:\:\:\:{x}^{\mathrm{3}} ={x}+{c}\:\:\:\Rightarrow \\ $$$${p}^{\mathrm{3}} +\left({t}^{\mathrm{2}} −{q}^{\mathrm{2}} \right)\sqrt{{t}^{\mathrm{2}} −{q}^{\mathrm{2}} } \\ $$$$+\mathrm{3}{p}\left({t}^{\mathrm{2}} −{q}^{\mathrm{2}} \right)+\mathrm{3}{p}^{\mathrm{2}} \sqrt{{t}^{\mathrm{2}} −{q}^{\mathrm{2}} } \\ $$$$−{p}−\sqrt{{t}^{\mathrm{2}} −{q}^{\mathrm{2}} }={c} \\ $$$$\:{Let}\:\:\:\:\mathrm{3}{p}^{\mathrm{2}} −{q}^{\mathrm{2}} =\mathrm{1}\:\:\:\:\Rightarrow \\ $$$${p}^{\mathrm{3}} +{t}^{\mathrm{2}} \sqrt{{t}^{\mathrm{2}} +\mathrm{1}−\mathrm{3}{p}^{\mathrm{2}} }+\mathrm{3}{p}\left({t}^{\mathrm{2}} +\mathrm{1}−\mathrm{3}{p}^{\mathrm{2}} \right) \\ $$$$−{p}−{c}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\:\left[\mathrm{8}{p}^{\mathrm{3}} −\left(\mathrm{2}+\mathrm{3}{t}^{\mathrm{2}} \right){p}+{c}\right]^{\mathrm{2}} ={t}^{\mathrm{4}} \left({t}^{\mathrm{2}} +\mathrm{1}−\mathrm{3}{p}^{\mathrm{2}} \right) \\ $$$${let}\:\:{t}^{\mathrm{2}} ={mp}^{\mathrm{2}} +{s} \\ $$$$\Rightarrow\:\left[\mathrm{8}{p}^{\mathrm{3}} −\mathrm{2}{p}−\mathrm{3}{p}\left({mp}^{\mathrm{2}} +{s}\right)+{c}\right]^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\:\left({mp}^{\mathrm{2}} +{s}\right)^{\mathrm{2}} \left({mp}^{\mathrm{2}} +{s}+\mathrm{1}−\mathrm{3}{p}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:{let}\:\:\:{s}=−\mathrm{1} \\ $$$$\Rightarrow\:\:\mathrm{8}{p}^{\mathrm{3}} −\mathrm{2}{p}−\mathrm{3}{p}\left({mp}^{\mathrm{2}} −\mathrm{1}\right)+{c} \\ $$$$\:\:\:\:\:\:\:=\sqrt{{m}−\mathrm{3}}\left({mp}^{\mathrm{2}} −\mathrm{1}\right){p} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{8}−\mathrm{3}{m}−{m}\sqrt{{m}−\mathrm{3}}\right){p}^{\mathrm{3}} \\ $$$$\:\:\:\:\:+\left(\mathrm{1}+\sqrt{{m}−\mathrm{3}}\right){p}+{c}\:=\:\mathrm{0} \\ $$$${let}\:\:\:\left(\mathrm{1}+\sqrt{{m}−\mathrm{3}}\right)={r} \\ $$$${r}^{\mathrm{3}} =\mathrm{1}+\left({m}−\mathrm{3}\right)\sqrt{{m}−\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:+\mathrm{3}\sqrt{{m}−\mathrm{3}}+\mathrm{3}\left({m}−\mathrm{3}\right) \\ $$$$\:\:=\:−\mathrm{8}+{m}\sqrt{{m}−\mathrm{3}}+\mathrm{3}{m} \\ $$$$..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com