Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 128611 by malwan last updated on 08/Jan/21

write the equation of the   circle which containing   the points (4,−3),(1,−2)  and center on line  3x + 4y =7

$${write}\:{the}\:{equation}\:{of}\:{the}\: \\ $$$${circle}\:{which}\:{containing}\: \\ $$$${the}\:{points}\:\left(\mathrm{4},−\mathrm{3}\right),\left(\mathrm{1},−\mathrm{2}\right) \\ $$$${and}\:{center}\:{on}\:{line} \\ $$$$\mathrm{3}{x}\:+\:\mathrm{4}{y}\:=\mathrm{7} \\ $$

Answered by mr W last updated on 09/Jan/21

(((4+1)/2), ((−3−2)/2))=((5/2), −(5/2))  ((−3−(−2))/(4−1))=−(1/3)  y=−(5/2)+3(x−(5/2))  −(5/2)+3(x−(5/2))=(7/4)−(3/4)x  ⇒x=((47)/(15))  ⇒y=−(5/2)+3(((47)/(15))−(5/2))=−(3/5)  ⇒center (((47)/(15)), −(3/5))  radius^2 =(4−((47)/(15)))^2 +(−3+(3/5))^2 =((293)/(45))  ⇒eqn. of circle:  (x−((47)/(15)))^2 +(y+(3/5))^2 =((293)/(45))

$$\left(\frac{\mathrm{4}+\mathrm{1}}{\mathrm{2}},\:\frac{−\mathrm{3}−\mathrm{2}}{\mathrm{2}}\right)=\left(\frac{\mathrm{5}}{\mathrm{2}},\:−\frac{\mathrm{5}}{\mathrm{2}}\right) \\ $$$$\frac{−\mathrm{3}−\left(−\mathrm{2}\right)}{\mathrm{4}−\mathrm{1}}=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${y}=−\frac{\mathrm{5}}{\mathrm{2}}+\mathrm{3}\left({x}−\frac{\mathrm{5}}{\mathrm{2}}\right) \\ $$$$−\frac{\mathrm{5}}{\mathrm{2}}+\mathrm{3}\left({x}−\frac{\mathrm{5}}{\mathrm{2}}\right)=\frac{\mathrm{7}}{\mathrm{4}}−\frac{\mathrm{3}}{\mathrm{4}}{x} \\ $$$$\Rightarrow{x}=\frac{\mathrm{47}}{\mathrm{15}} \\ $$$$\Rightarrow{y}=−\frac{\mathrm{5}}{\mathrm{2}}+\mathrm{3}\left(\frac{\mathrm{47}}{\mathrm{15}}−\frac{\mathrm{5}}{\mathrm{2}}\right)=−\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\Rightarrow{center}\:\left(\frac{\mathrm{47}}{\mathrm{15}},\:−\frac{\mathrm{3}}{\mathrm{5}}\right) \\ $$$${radius}^{\mathrm{2}} =\left(\mathrm{4}−\frac{\mathrm{47}}{\mathrm{15}}\right)^{\mathrm{2}} +\left(−\mathrm{3}+\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} =\frac{\mathrm{293}}{\mathrm{45}} \\ $$$$\Rightarrow{eqn}.\:{of}\:{circle}: \\ $$$$\left({x}−\frac{\mathrm{47}}{\mathrm{15}}\right)^{\mathrm{2}} +\left({y}+\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} =\frac{\mathrm{293}}{\mathrm{45}} \\ $$

Commented by malwan last updated on 09/Jan/21

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by liberty last updated on 08/Jan/21

let the center point is P(a,b)   (1) R=(√((4−a)^2 +(−3−b)^2 ))  (2)R=(√((1−a)^2 +(−2−b)^2 ))  (3) R=R ⇒16−8a+a^2 +9+6b+b^2 =1−2a+a^2 +4+4b+b^2   ⇒25−8a+6b=5−2a+4b ; −6a+2b=−20        −3a+b=−10  (3) 3a+4b=7   (2)+(3)⇒5b=−3 ,  { ((b=−(3/5))),((a=((7−4(−(3/5)))/3)=((47)/(15)))) :}    we get P(((47)/(15)), −(3/5)) & R=(√((4−((47)/(15)))^2 +(−3+(3/5))^2 ))=(√((((169)/(225)))+(((144)/(25)))))  R=(√((1465)/(225))) . then eq of the circle :≡ (x−((47)/(15)))^2 +(y+(3/5))^2 =((1465)/(225))

$$\mathrm{let}\:\mathrm{the}\:\mathrm{center}\:\mathrm{point}\:\mathrm{is}\:\mathrm{P}\left(\mathrm{a},\mathrm{b}\right)\: \\ $$$$\left(\mathrm{1}\right)\:\mathrm{R}=\sqrt{\left(\mathrm{4}−\mathrm{a}\right)^{\mathrm{2}} +\left(−\mathrm{3}−\mathrm{b}\right)^{\mathrm{2}} } \\ $$$$\left(\mathrm{2}\right)\mathrm{R}=\sqrt{\left(\mathrm{1}−\mathrm{a}\right)^{\mathrm{2}} +\left(−\mathrm{2}−\mathrm{b}\right)^{\mathrm{2}} } \\ $$$$\left(\mathrm{3}\right)\:\mathrm{R}=\mathrm{R}\:\Rightarrow\mathrm{16}−\mathrm{8a}+\mathrm{a}^{\mathrm{2}} +\mathrm{9}+\mathrm{6b}+\mathrm{b}^{\mathrm{2}} =\mathrm{1}−\mathrm{2a}+\mathrm{a}^{\mathrm{2}} +\mathrm{4}+\mathrm{4b}+\mathrm{b}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{25}−\mathrm{8a}+\mathrm{6b}=\mathrm{5}−\mathrm{2a}+\mathrm{4b}\:;\:−\mathrm{6a}+\mathrm{2b}=−\mathrm{20} \\ $$$$\:\:\:\:\:\:−\mathrm{3a}+\mathrm{b}=−\mathrm{10} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{3a}+\mathrm{4b}=\mathrm{7}\: \\ $$$$\left(\mathrm{2}\right)+\left(\mathrm{3}\right)\Rightarrow\mathrm{5b}=−\mathrm{3}\:,\:\begin{cases}{\mathrm{b}=−\frac{\mathrm{3}}{\mathrm{5}}}\\{\mathrm{a}=\frac{\mathrm{7}−\mathrm{4}\left(−\frac{\mathrm{3}}{\mathrm{5}}\right)}{\mathrm{3}}=\frac{\mathrm{47}}{\mathrm{15}}}\end{cases} \\ $$$$ \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{P}\left(\frac{\mathrm{47}}{\mathrm{15}},\:−\frac{\mathrm{3}}{\mathrm{5}}\right)\:\&\:\mathrm{R}=\sqrt{\left(\mathrm{4}−\frac{\mathrm{47}}{\mathrm{15}}\right)^{\mathrm{2}} +\left(−\mathrm{3}+\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} }=\sqrt{\left(\frac{\mathrm{169}}{\mathrm{225}}\right)+\left(\frac{\mathrm{144}}{\mathrm{25}}\right)} \\ $$$$\mathrm{R}=\sqrt{\frac{\mathrm{1465}}{\mathrm{225}}}\:.\:\mathrm{then}\:\mathrm{eq}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\::\equiv\:\left(\mathrm{x}−\frac{\mathrm{47}}{\mathrm{15}}\right)^{\mathrm{2}} +\left(\mathrm{y}+\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} =\frac{\mathrm{1465}}{\mathrm{225}} \\ $$

Commented by malwan last updated on 09/Jan/21

thank you so much

$${thank}\:{you}\:{so}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com