Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 128593 by Eric002 last updated on 08/Jan/21

lim_(x→0) ((∣3x−1∣−∣3x+1∣)/x)

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mid\mathrm{3}{x}−\mathrm{1}\mid−\mid\mathrm{3}{x}+\mathrm{1}\mid}{{x}} \\ $$

Commented by MJS_new last updated on 08/Jan/21

((∣3x−1∣−∣3x+1∣)/x)=(3/x)(∣x−(1/3)∣−∣x+(1/3)∣)=       [−(1/3)≤x≤(1/3)]  =(3/x)(−2x)=−((6x)/x)=−6∀x∈[−(1/3); (1/3)]∧x≠0  ⇒ limit is −6

$$\frac{\mid\mathrm{3}{x}−\mathrm{1}\mid−\mid\mathrm{3}{x}+\mathrm{1}\mid}{{x}}=\frac{\mathrm{3}}{{x}}\left(\mid{x}−\frac{\mathrm{1}}{\mathrm{3}}\mid−\mid{x}+\frac{\mathrm{1}}{\mathrm{3}}\mid\right)= \\ $$$$\:\:\:\:\:\left[−\frac{\mathrm{1}}{\mathrm{3}}\leqslant{x}\leqslant\frac{\mathrm{1}}{\mathrm{3}}\right] \\ $$$$=\frac{\mathrm{3}}{{x}}\left(−\mathrm{2}{x}\right)=−\frac{\mathrm{6}{x}}{{x}}=−\mathrm{6}\forall{x}\in\left[−\frac{\mathrm{1}}{\mathrm{3}};\:\frac{\mathrm{1}}{\mathrm{3}}\right]\wedge{x}\neq\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{limit}\:\mathrm{is}\:−\mathrm{6} \\ $$

Commented by john_santu last updated on 08/Jan/21

lim_(x→0) (((√(9x^2 −6x+1))−(√(9x^2 +6x+1)))/x)=  lim_(x→0)   ((−12x)/(x[(√(9x^2 −6x+1))+(√(9x^2 +6x+1)) ]))=  lim_(x→0)  ((−12)/( (√(9x^2 −6x+1))+(√(9x^2 +6x+1))))=((−12)/2)=−6

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\mathrm{9x}^{\mathrm{2}} −\mathrm{6x}+\mathrm{1}}−\sqrt{\mathrm{9x}^{\mathrm{2}} +\mathrm{6x}+\mathrm{1}}}{\mathrm{x}}= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{−\mathrm{12x}}{\mathrm{x}\left[\sqrt{\mathrm{9x}^{\mathrm{2}} −\mathrm{6x}+\mathrm{1}}+\sqrt{\mathrm{9x}^{\mathrm{2}} +\mathrm{6x}+\mathrm{1}}\:\right]}= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{12}}{\:\sqrt{\mathrm{9x}^{\mathrm{2}} −\mathrm{6x}+\mathrm{1}}+\sqrt{\mathrm{9x}^{\mathrm{2}} +\mathrm{6x}+\mathrm{1}}}=\frac{−\mathrm{12}}{\mathrm{2}}=−\mathrm{6} \\ $$

Answered by Olaf last updated on 08/Jan/21

lim_(x→0)  ((∣3x−1∣−∣3x+1∣)/x)  = lim_(x→0)  (((−3x+1)−(3x+1))/x)  = lim_(x→0)  ((−6x)/x) = −6

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mid\mathrm{3}{x}−\mathrm{1}\mid−\mid\mathrm{3}{x}+\mathrm{1}\mid}{{x}} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(−\mathrm{3}{x}+\mathrm{1}\right)−\left(\mathrm{3}{x}+\mathrm{1}\right)}{{x}} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{6}{x}}{{x}}\:=\:−\mathrm{6} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com