Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 128575 by Study last updated on 08/Jan/21

∫(√(x^2 +4x+13))dx=??

$$\int\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{13}}{dx}=?? \\ $$

Commented by MJS_new last updated on 08/Jan/21

use formula for ∫(√(x^2 +ax+b)) dx !!! to get  (((x+2)(√(x^2 +4x+13)))/2)+(9/2)ln (x+2+(√(x^2 +4x+13))) +C

$$\mathrm{use}\:\mathrm{formula}\:\mathrm{for}\:\int\sqrt{{x}^{\mathrm{2}} +{ax}+{b}}\:{dx}\:!!!\:\mathrm{to}\:\mathrm{get} \\ $$$$\frac{\left({x}+\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{13}}}{\mathrm{2}}+\frac{\mathrm{9}}{\mathrm{2}}\mathrm{ln}\:\left({x}+\mathrm{2}+\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{13}}\right)\:+{C} \\ $$

Commented by Study last updated on 08/Jan/21

which formula?

$${which}\:{formula}? \\ $$

Commented by MJS_new last updated on 08/Jan/21

you could search the web for integration  formulas, couldn′t you?

$$\mathrm{you}\:\mathrm{could}\:\mathrm{search}\:\mathrm{the}\:\mathrm{web}\:\mathrm{for}\:\mathrm{integration} \\ $$$$\mathrm{formulas},\:\mathrm{couldn}'\mathrm{t}\:\mathrm{you}? \\ $$

Answered by john_santu last updated on 08/Jan/21

∫ (√((x+2)^2 +3^2 )) dx   x+2 = 3 tan t  ∫ (√(9sec^2 t)) 3sec^2  t dt =  I=∫9sec^3 t dt   ♭=∫sec^3 t dt =∫sec t d(tan t)  ♭=sec t.tan t−∫tan^2 t sec t dt  ♭=sec t.tan t−∫(sec^2 t−1)sec t dt  ♭=sec t.tan t−∫sec^3 t dx+ln ∣sec t+tan t∣+c  2♭ = sec t.tan t+ln ∣sec t+tan t∣+c  ♭=((sec t.tan t)/2) + ((ln ∣sec t+tan t∣)/2)+C  I= (9/2)sec t.tan t+(9/2)ln ∣sec t+tan t∣+C   put tan t=((x+2)/3)

$$\int\:\sqrt{\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }\:\mathrm{dx}\: \\ $$$$\mathrm{x}+\mathrm{2}\:=\:\mathrm{3}\:\mathrm{tan}\:\mathrm{t} \\ $$$$\int\:\sqrt{\mathrm{9sec}\:^{\mathrm{2}} \mathrm{t}}\:\mathrm{3sec}^{\mathrm{2}} \:\mathrm{t}\:\mathrm{dt}\:= \\ $$$$\mathrm{I}=\int\mathrm{9sec}\:^{\mathrm{3}} \mathrm{t}\:\mathrm{dt}\: \\ $$$$\flat=\int\mathrm{sec}\:^{\mathrm{3}} \mathrm{t}\:\mathrm{dt}\:=\int\mathrm{sec}\:\mathrm{t}\:\mathrm{d}\left(\mathrm{tan}\:\mathrm{t}\right) \\ $$$$\flat=\mathrm{sec}\:\mathrm{t}.\mathrm{tan}\:\mathrm{t}−\int\mathrm{tan}\:^{\mathrm{2}} \mathrm{t}\:\mathrm{sec}\:\mathrm{t}\:\mathrm{dt} \\ $$$$\flat=\mathrm{sec}\:\mathrm{t}.\mathrm{tan}\:\mathrm{t}−\int\left(\mathrm{sec}\:^{\mathrm{2}} \mathrm{t}−\mathrm{1}\right)\mathrm{sec}\:\mathrm{t}\:\mathrm{dt} \\ $$$$\flat=\mathrm{sec}\:\mathrm{t}.\mathrm{tan}\:\mathrm{t}−\int\mathrm{sec}\:^{\mathrm{3}} \mathrm{t}\:\mathrm{dx}+\mathrm{ln}\:\mid\mathrm{sec}\:\mathrm{t}+\mathrm{tan}\:\mathrm{t}\mid+\mathrm{c} \\ $$$$\mathrm{2}\flat\:=\:\mathrm{sec}\:\mathrm{t}.\mathrm{tan}\:\mathrm{t}+\mathrm{ln}\:\mid\mathrm{sec}\:\mathrm{t}+\mathrm{tan}\:\mathrm{t}\mid+\mathrm{c} \\ $$$$\flat=\frac{\mathrm{sec}\:\mathrm{t}.\mathrm{tan}\:\mathrm{t}}{\mathrm{2}}\:+\:\frac{\mathrm{ln}\:\mid\mathrm{sec}\:\mathrm{t}+\mathrm{tan}\:\mathrm{t}\mid}{\mathrm{2}}+\mathrm{C} \\ $$$$\mathrm{I}=\:\frac{\mathrm{9}}{\mathrm{2}}\mathrm{sec}\:\mathrm{t}.\mathrm{tan}\:\mathrm{t}+\frac{\mathrm{9}}{\mathrm{2}}\mathrm{ln}\:\mid\mathrm{sec}\:\mathrm{t}+\mathrm{tan}\:\mathrm{t}\mid+\mathrm{C}\: \\ $$$$\mathrm{put}\:\mathrm{tan}\:\mathrm{t}=\frac{\mathrm{x}+\mathrm{2}}{\mathrm{3}} \\ $$$$ \\ $$

Answered by MJS_new last updated on 08/Jan/21

sometimes you seem like a kid with a bicycle  asking how to drive a racing car through a  chicane...  ∫(√(x^2 +4x+13)) dx=∫(√((x+2)^2 +9)) dx=       [t=x+2 ⇔ x=t−2 → dx=dt]  =∫(√(t^2 +9)) dt=       [u=((t+(√(t^2 +9)))/3) ⇔  t=((3(u^2 −1))/2) → dt=((3(√(t^2 +9)) du)/(t+(√(t^2 +9))))]  =(9/4)∫(((u^2 +1)^2 )/u^3 )du=(9/4)∫u+(2/u)+(1/u^3 ) du  and I hope you can go on from here

$$\mathrm{sometimes}\:\mathrm{you}\:\mathrm{seem}\:\mathrm{like}\:\mathrm{a}\:\mathrm{kid}\:\mathrm{with}\:\mathrm{a}\:\mathrm{bicycle} \\ $$$$\mathrm{asking}\:\mathrm{how}\:\mathrm{to}\:\mathrm{drive}\:\mathrm{a}\:\mathrm{racing}\:\mathrm{car}\:\mathrm{through}\:\mathrm{a} \\ $$$$\mathrm{chicane}... \\ $$$$\int\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{13}}\:{dx}=\int\sqrt{\left({x}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{9}}\:{dx}= \\ $$$$\:\:\:\:\:\left[{t}={x}+\mathrm{2}\:\Leftrightarrow\:{x}={t}−\mathrm{2}\:\rightarrow\:{dx}={dt}\right] \\ $$$$=\int\sqrt{{t}^{\mathrm{2}} +\mathrm{9}}\:{dt}= \\ $$$$\:\:\:\:\:\left[{u}=\frac{{t}+\sqrt{{t}^{\mathrm{2}} +\mathrm{9}}}{\mathrm{3}}\:\Leftrightarrow\:\:{t}=\frac{\mathrm{3}\left({u}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{2}}\:\rightarrow\:{dt}=\frac{\mathrm{3}\sqrt{{t}^{\mathrm{2}} +\mathrm{9}}\:{du}}{{t}+\sqrt{{t}^{\mathrm{2}} +\mathrm{9}}}\right] \\ $$$$=\frac{\mathrm{9}}{\mathrm{4}}\int\frac{\left({u}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{{u}^{\mathrm{3}} }{du}=\frac{\mathrm{9}}{\mathrm{4}}\int{u}+\frac{\mathrm{2}}{{u}}+\frac{\mathrm{1}}{{u}^{\mathrm{3}} }\:{du} \\ $$$$\mathrm{and}\:\mathrm{I}\:\mathrm{hope}\:\mathrm{you}\:\mathrm{can}\:\mathrm{go}\:\mathrm{on}\:\mathrm{from}\:\mathrm{here} \\ $$

Commented by john_santu last updated on 08/Jan/21

��������������������������

Answered by Dwaipayan Shikari last updated on 08/Jan/21

∫(√((x+2)^2 +3^2 ))  dx           x+2=3sinht⇒1=3cosht (dt/dx)  =9∫cosh^2 t dt =(9/2)+(9/2)∫cosh(2t)dt=(9/2)t+(9/4)sinh(2t)+C  =(9/2)sinh^(−1) (((x+2)/3))+(1/2)(x+2)(√(x^2 +4x+13))  =(9/2)log(x+2+(√(x^2 +4x+13)))+(((x+2))/2)(√(x^2 +4x+13)) +C

$$\int\sqrt{\left({x}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }\:\:{dx}\:\:\:\:\:\:\:\:\:\:\:{x}+\mathrm{2}=\mathrm{3}{sinht}\Rightarrow\mathrm{1}=\mathrm{3}{cosht}\:\frac{{dt}}{{dx}} \\ $$$$=\mathrm{9}\int{cosh}^{\mathrm{2}} {t}\:{dt}\:=\frac{\mathrm{9}}{\mathrm{2}}+\frac{\mathrm{9}}{\mathrm{2}}\int{cosh}\left(\mathrm{2}{t}\right){dt}=\frac{\mathrm{9}}{\mathrm{2}}{t}+\frac{\mathrm{9}}{\mathrm{4}}{sinh}\left(\mathrm{2}{t}\right)+{C} \\ $$$$=\frac{\mathrm{9}}{\mathrm{2}}{sinh}^{−\mathrm{1}} \left(\frac{{x}+\mathrm{2}}{\mathrm{3}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\left({x}+\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{13}} \\ $$$$=\frac{\mathrm{9}}{\mathrm{2}}{log}\left({x}+\mathrm{2}+\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{13}}\right)+\frac{\left({x}+\mathrm{2}\right)}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{13}}\:+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com