Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 128439 by Study last updated on 07/Jan/21

lim_(x→(π/2)) ((cosx)/(1−sinx))=???

$${li}\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {{m}}\frac{{cosx}}{\mathrm{1}−{sinx}}=??? \\ $$

Answered by benjo_mathlover last updated on 07/Jan/21

let x=(π/2)+z ∧ z→0   lim_(z→0)  ((cos ((π/2)+z))/(1−sin (z+(π/2))))=lim_(z→0)  ((−sin z)/(1−cos z))  = lim_(z→0)   ((−sin z)/(2sin^2 (z/2))) = −∞

$$\mathrm{let}\:\mathrm{x}=\frac{\pi}{\mathrm{2}}+\mathrm{z}\:\wedge\:\mathrm{z}\rightarrow\mathrm{0} \\ $$$$\:\underset{\mathrm{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}+\mathrm{z}\right)}{\mathrm{1}−\mathrm{sin}\:\left(\mathrm{z}+\frac{\pi}{\mathrm{2}}\right)}=\underset{\mathrm{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{sin}\:\mathrm{z}}{\mathrm{1}−\mathrm{cos}\:\mathrm{z}} \\ $$$$=\:\underset{\mathrm{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{−\mathrm{sin}\:\mathrm{z}}{\mathrm{2sin}\:^{\mathrm{2}} \left(\mathrm{z}/\mathrm{2}\right)}\:=\:−\infty\: \\ $$

Answered by liberty last updated on 08/Jan/21

 lim_(x→π/2)  ((cos^2 (x/2)−sin^2 (x/2))/(sin^2 (x/2)−2sin (x/2)cos (x/2)+cos^2 (x/2)))  = lim_(x→π/2)  (((cos (x/2)−sin (x/2))(cos (x/2)+sin (x/2)))/((cos (x/2)−sin (x/2))^2 ))  = lim_(x→π/2)  ((cos (x/2)+sin (x/2))/(∣cos (x/2)−sin (x/2)∣)) = ((√2)/0) = ∞  or lim_(x→π/2) ((cos ((x/2))+sin ((x/2)))/(∣cos (x/2)−sin (x/2)∣))=−∞

$$\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{x}/\mathrm{2}\right)−\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{x}/\mathrm{2}\right)}{\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{x}/\mathrm{2}\right)−\mathrm{2sin}\:\left(\mathrm{x}/\mathrm{2}\right)\mathrm{cos}\:\left(\mathrm{x}/\mathrm{2}\right)+\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{x}/\mathrm{2}\right)} \\ $$$$=\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\:\frac{\left(\mathrm{cos}\:\frac{\mathrm{x}}{\mathrm{2}}−\mathrm{sin}\:\frac{\mathrm{x}}{\mathrm{2}}\right)\left(\mathrm{cos}\:\frac{\mathrm{x}}{\mathrm{2}}+\mathrm{sin}\:\frac{\mathrm{x}}{\mathrm{2}}\right)}{\left(\mathrm{cos}\:\frac{\mathrm{x}}{\mathrm{2}}−\mathrm{sin}\:\frac{\mathrm{x}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$=\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\frac{\mathrm{x}}{\mathrm{2}}+\mathrm{sin}\:\frac{\mathrm{x}}{\mathrm{2}}}{\mid\mathrm{cos}\:\frac{\mathrm{x}}{\mathrm{2}}−\mathrm{sin}\:\frac{\mathrm{x}}{\mathrm{2}}\mid}\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{0}}\:=\:\infty \\ $$$$\mathrm{or}\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\frac{\mathrm{cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)+\mathrm{sin}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)}{\mid\mathrm{cos}\:\frac{\mathrm{x}}{\mathrm{2}}−\mathrm{sin}\:\frac{\mathrm{x}}{\mathrm{2}}\mid}=−\infty \\ $$

Answered by MJS_new last updated on 08/Jan/21

limit doesn′t exist because  lim_(x→(π/2)^− )  ((cos x)/(1−sin x)) =+∞ but lim_(x→(π/2)^+ )  ((cos x)/(1−sin x)) =−∞

$$\mathrm{limit}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist}\:\mathrm{because} \\ $$$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}\:^{−} } {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}}{\mathrm{1}−\mathrm{sin}\:{x}}\:=+\infty\:\mathrm{but}\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}\:^{+} } {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}}{\mathrm{1}−\mathrm{sin}\:{x}}\:=−\infty \\ $$

Commented by liberty last updated on 08/Jan/21

yes....agree

$$\mathrm{yes}....\mathrm{agree} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com