Question Number 128346 by Ahmed1hamouda last updated on 06/Jan/21 | ||
Answered by MJS_new last updated on 06/Jan/21 | ||
$$\int{x}^{\mathrm{2}} \sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{2}{x}+\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}\:\rightarrow\:{dx}=\frac{\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{2}\left(\mathrm{2}{x}+\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}\right)}{dt}\right] \\ $$$$=\int\left(\frac{{t}^{\mathrm{3}} }{\mathrm{128}}−\frac{\mathrm{1}}{\mathrm{64}{t}}+\frac{\mathrm{1}}{\mathrm{128}{t}^{\mathrm{5}} }\right){dt}= \\ $$$$=\frac{{t}^{\mathrm{4}} }{\mathrm{512}}−\frac{\mathrm{ln}\:{t}}{\mathrm{64}}−\frac{\mathrm{1}}{\mathrm{512}{t}^{\mathrm{4}} }= \\ $$$$=\frac{{x}\left(\mathrm{8}{x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{32}}−\frac{\mathrm{1}}{\mathrm{64}}\mathrm{ln}\:\left(\mathrm{2}{x}+\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}\right)\:+{C} \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\frac{\mathrm{9}\sqrt{\mathrm{5}}}{\mathrm{32}}−\frac{\mathrm{1}}{\mathrm{64}}\mathrm{ln}\:\left(\mathrm{2}+\sqrt{\mathrm{5}}\right) \\ $$ | ||
Answered by mathmax by abdo last updated on 06/Jan/21 | ||
$$\mathrm{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{x}^{\mathrm{2}} \sqrt{\mathrm{4x}^{\mathrm{2}} +\mathrm{1}}\right)\mathrm{dx}\:\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{2x}=\mathrm{sh}\left(\mathrm{t}\right)\:\Rightarrow \\ $$$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{argsh}\left(\mathrm{2}\right)} \left(\frac{\mathrm{sht}}{\mathrm{2}}\right)^{\mathrm{2}} \mathrm{cht}\:×\frac{\mathrm{chtdt}}{\mathrm{2}}\:=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{2}+\sqrt{\mathrm{1}+\mathrm{2}^{\mathrm{2}} }\right)\:} \mathrm{sh}^{\mathrm{2}} \mathrm{t}\:\mathrm{ch}^{\mathrm{2}} \:\mathrm{t}\:\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} \left(\frac{\mathrm{sh}\left(\mathrm{2t}\right)}{\mathrm{2}}\right)^{\mathrm{2}} \:\mathrm{dt}\:=\frac{\mathrm{1}}{\mathrm{32}}\int_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} \frac{\mathrm{ch}\left(\mathrm{4t}\right)−\mathrm{1}}{\mathrm{2}}\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{64}}\int_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} \left(\mathrm{ch}\left(\mathrm{4t}\right)−\mathrm{1}\right)\mathrm{dt}\:=\frac{\mathrm{1}}{\mathrm{4}.\mathrm{64}}\left[\mathrm{ch}\left(\mathrm{4t}\right)\right]_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} −\frac{\mathrm{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)}{\mathrm{64}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}.\mathrm{64}}\left[\frac{\mathrm{e}^{\mathrm{4t}} +\mathrm{e}^{−\mathrm{4t}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} −\frac{\mathrm{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)}{\mathrm{64}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}.\mathrm{64}}\left\{\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)^{\mathrm{4}} +\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)^{−\mathrm{4}} −\mathrm{2}\right\} \\ $$ | ||