Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 128205 by john_santu last updated on 05/Jan/21

solve (dy/dx) + (dx/dy) = 4x^2 +3

$$\mathrm{solve}\:\frac{{dy}}{{dx}}\:+\:\frac{{dx}}{{dy}}\:=\:\mathrm{4}{x}^{\mathrm{2}} +\mathrm{3} \\ $$

Answered by mr W last updated on 05/Jan/21

(y′)^2 −(4x^2 +3)y′+1=0  y′=((4x^2 +3±(√((4x^2 +5)(4x^2 +1))))/2)  y=(1/2)∫[4x^2 +3±(√((4x^2 +5)(4x^2 +1)))]dx  y=(1/2)[((4x^3 )/3)+3x±(1/2)∫(√(((2x)^2 +5)((2x)^2 +1)))d(2x)]  with u=2x  y=((2x^3 )/3)+((3x)/2)±(1/4)∫(√((u^2 +5)(u^2 +1)))du  ......

$$\left({y}'\right)^{\mathrm{2}} −\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{3}\right){y}'+\mathrm{1}=\mathrm{0} \\ $$$${y}'=\frac{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{3}\pm\sqrt{\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}\right)\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)}}{\mathrm{2}} \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}}\int\left[\mathrm{4}{x}^{\mathrm{2}} +\mathrm{3}\pm\sqrt{\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}\right)\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)}\right]{dx} \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{4}{x}^{\mathrm{3}} }{\mathrm{3}}+\mathrm{3}{x}\pm\frac{\mathrm{1}}{\mathrm{2}}\int\sqrt{\left(\left(\mathrm{2}{x}\right)^{\mathrm{2}} +\mathrm{5}\right)\left(\left(\mathrm{2}{x}\right)^{\mathrm{2}} +\mathrm{1}\right)}{d}\left(\mathrm{2}{x}\right)\right] \\ $$$${with}\:{u}=\mathrm{2}{x} \\ $$$${y}=\frac{\mathrm{2}{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{3}{x}}{\mathrm{2}}\pm\frac{\mathrm{1}}{\mathrm{4}}\int\sqrt{\left({u}^{\mathrm{2}} +\mathrm{5}\right)\left({u}^{\mathrm{2}} +\mathrm{1}\right)}{du} \\ $$$$...... \\ $$

Commented by john_santu last updated on 05/Jan/21

Commented by john_santu last updated on 05/Jan/21

i got the same result  but stuck the second integral

$${i}\:{got}\:{the}\:{same}\:{result} \\ $$$${but}\:{stuck}\:{the}\:{second}\:{integral}\: \\ $$

Commented by mr W last updated on 05/Jan/21

yes,   ∫(√((4x^2 +5)(4x^2 +1)))dx is not integrable  with elementary functions.

$${yes},\: \\ $$$$\int\sqrt{\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}\right)\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)}{dx}\:{is}\:{not}\:{integrable} \\ $$$${with}\:{elementary}\:{functions}. \\ $$

Commented by mindispower last updated on 05/Jan/21

x=(1/2)sh(t)  ⇒∫(√(sh^2 (t)+5)).((ch^2 (t))/2)dt  ch^2 (t)=((1+ch(2t))/2),∫ch^2 (t)=(t/2)+(1/4)sh(2t)  (1/2)((t/2)+((sh(2t))/4))(√(sh^2 (t)+5))−(1/4)∫((tsh(t)ch(t))/( (√(sh^2 (t)+5))))dt−(1/8)∫((sh^2 (t))/( (√(sh^2 (t)+5))))dt  ∫((tsh(t)ch(t))/( (√(sh^2 (t)+5))))dt  =∫((tsh(2t))/(2.(√(4+ch^2 (t))))) by part =(√(4+ch^2 (t)))t−∫(√(4+ch^2 (t)))dt  ∫(√(4+ch^2 (t)))dt=∫(√(5+sh^2 (t)))dt  t=iw  ⇒∫(√(5+(sh(iw))^2 )).idw  =i∫(√(5−sin^2 (w)))dw  =i(√5)∫(√(1−(((sinw)/( (√5))))^2 ))dw=i(√5)(E(sin(w,(1/( (√5)))))  E(sin(∅),k)=∫_0 ^ϕ (√(1−k^2 sin^2 (t)))dt.. 2 nd eleptic integrak  ∫((sh^2 (t))/( (√(5+sh^2 (t))))),dt=∫(√(sh^2 (t)+5))−5∫(dt/( (√(5+sh^2 (t)))))  A−5B,A donne B,t→ix  B=5i∫(dx/( (√(5−sin^2 (x)))))=i(√5)∫(dx/( (√(1−(((sin(x))/( (√5))))^2 ))))  =i(√5)F(sin(x),(1/( (√5))))  F(sin(t),k)=∫(dt/( (√(1−k^2 sin(x))))), first eleptic integral  ⇒∫(√(5+4x^2 )).(√(1+4x^2 ))dx has close hard to express  withe x variable but possibl

$${x}=\frac{\mathrm{1}}{\mathrm{2}}{sh}\left({t}\right) \\ $$$$\Rightarrow\int\sqrt{{sh}^{\mathrm{2}} \left({t}\right)+\mathrm{5}}.\frac{{ch}^{\mathrm{2}} \left({t}\right)}{\mathrm{2}}{dt} \\ $$$${ch}^{\mathrm{2}} \left({t}\right)=\frac{\mathrm{1}+{ch}\left(\mathrm{2}{t}\right)}{\mathrm{2}},\int{ch}^{\mathrm{2}} \left({t}\right)=\frac{{t}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}{sh}\left(\mathrm{2}{t}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{t}}{\mathrm{2}}+\frac{{sh}\left(\mathrm{2}{t}\right)}{\mathrm{4}}\right)\sqrt{{sh}^{\mathrm{2}} \left({t}\right)+\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{tsh}\left({t}\right){ch}\left({t}\right)}{\:\sqrt{{sh}^{\mathrm{2}} \left({t}\right)+\mathrm{5}}}{dt}−\frac{\mathrm{1}}{\mathrm{8}}\int\frac{{sh}^{\mathrm{2}} \left({t}\right)}{\:\sqrt{{sh}^{\mathrm{2}} \left({t}\right)+\mathrm{5}}}{dt} \\ $$$$\int\frac{{tsh}\left({t}\right){ch}\left({t}\right)}{\:\sqrt{{sh}^{\mathrm{2}} \left({t}\right)+\mathrm{5}}}{dt} \\ $$$$=\int\frac{{tsh}\left(\mathrm{2}{t}\right)}{\mathrm{2}.\sqrt{\mathrm{4}+{ch}^{\mathrm{2}} \left({t}\right)}}\:{by}\:{part}\:=\sqrt{\mathrm{4}+{ch}^{\mathrm{2}} \left({t}\right)}{t}−\int\sqrt{\mathrm{4}+{ch}^{\mathrm{2}} \left({t}\right)}{dt} \\ $$$$\int\sqrt{\mathrm{4}+{ch}^{\mathrm{2}} \left({t}\right)}{dt}=\int\sqrt{\mathrm{5}+{sh}^{\mathrm{2}} \left({t}\right)}{dt} \\ $$$${t}={iw} \\ $$$$\Rightarrow\int\sqrt{\mathrm{5}+\left({sh}\left({iw}\right)\right)^{\mathrm{2}} }.{idw} \\ $$$$={i}\int\sqrt{\mathrm{5}−{sin}^{\mathrm{2}} \left({w}\right)}{dw} \\ $$$$={i}\sqrt{\mathrm{5}}\int\sqrt{\mathrm{1}−\left(\frac{{sinw}}{\:\sqrt{\mathrm{5}}}\right)^{\mathrm{2}} }{dw}={i}\sqrt{\mathrm{5}}\left({E}\left({sin}\left({w},\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\right)\right)\right. \\ $$$${E}\left({sin}\left(\emptyset\right),{k}\right)=\int_{\mathrm{0}} ^{\varphi} \sqrt{\mathrm{1}−{k}^{\mathrm{2}} {sin}^{\mathrm{2}} \left({t}\right)}{dt}..\:\mathrm{2}\:{nd}\:{eleptic}\:{integrak} \\ $$$$\int\frac{{sh}^{\mathrm{2}} \left({t}\right)}{\:\sqrt{\mathrm{5}+{sh}^{\mathrm{2}} \left({t}\right)}},{dt}=\int\sqrt{{sh}^{\mathrm{2}} \left({t}\right)+\mathrm{5}}−\mathrm{5}\int\frac{{dt}}{\:\sqrt{\mathrm{5}+{sh}^{\mathrm{2}} \left({t}\right)}} \\ $$$${A}−\mathrm{5}{B},{A}\:{donne}\:{B},{t}\rightarrow{ix} \\ $$$${B}=\mathrm{5}{i}\int\frac{{dx}}{\:\sqrt{\mathrm{5}−{sin}^{\mathrm{2}} \left({x}\right)}}={i}\sqrt{\mathrm{5}}\int\frac{{dx}}{\:\sqrt{\mathrm{1}−\left(\frac{{sin}\left({x}\right)}{\:\sqrt{\mathrm{5}}}\right)^{\mathrm{2}} }} \\ $$$$={i}\sqrt{\mathrm{5}}{F}\left({sin}\left({x}\right),\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\right) \\ $$$${F}\left({sin}\left({t}\right),{k}\right)=\int\frac{{dt}}{\:\sqrt{\mathrm{1}−{k}^{\mathrm{2}} {sin}\left({x}\right)}},\:{first}\:{eleptic}\:{integral} \\ $$$$\Rightarrow\int\sqrt{\mathrm{5}+\mathrm{4}{x}^{\mathrm{2}} }.\sqrt{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }{dx}\:{has}\:{close}\:{hard}\:{to}\:{express} \\ $$$${withe}\:{x}\:{variable}\:{but}\:{possibl} \\ $$$$ \\ $$$$ \\ $$

Commented by john_santu last updated on 05/Jan/21

thank you

$${thank}\:{you} \\ $$

Commented by mindispower last updated on 06/Jan/21

withe pleasur

$${withe}\:{pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com