Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 128193 by Algoritm last updated on 05/Jan/21

Answered by mr W last updated on 05/Jan/21

Commented by Algoritm last updated on 05/Jan/21

?=

$$?=\:\: \\ $$

Commented by mr W last updated on 05/Jan/21

((AE)/(sin β))=((BE)/(sin (110+β)))=((AB)/(sin 110))  ⇒AE=((sin β)/(sin 70))  ⇒BE=((sin (70−β))/(sin 70))  ((EC)/(sin (45−β)))=((BC)/(sin (45−β+γ)))=((BE)/(sin γ))  ((√2)/(sin (45−β+γ)))=((sin (70−β))/(sin 70 sin γ))  (((√2) sin 70)/(sin (70−β)))=(((√2) cos (β−γ)−(√2) sin (β−γ))/(2 sin γ))  ((2 sin 70)/(sin (70−β)))=((cos (β−γ)−sin (β−γ))/(sin γ))  ((2 sin 70)/(sin (70−β)))=((cos β cos γ+sin β sin γ−sin β cos γ+cos β sin γ)/(sin γ))  ((2 sin 70)/(sin (70−β)))=sin β+cos β+((cos β−sin β)/(tan γ))  ⇒tan γ=((cos β−sin β)/(((2 sin 70)/(sin (70−β)))−sin β−cos β))   ...(i)  EC=(((√2) sin (45−β))/(sin (45−β+γ)))  α=180−70−(45−γ)=65+γ  AD=(1/(tan α))=(1/(tan (65+γ)))  DC=1−(1/(tan (65+γ)))  ((DC)/(sin 70))=((EC)/(sin α))  (1/(sin 70))(1−(1/(tan (65+γ))))=(((√2) sin (45−β))/(sin (45−β+γ)sin (65+γ)))  (1/(sin 70))(sin (65+γ)−cos (65+γ))=(((√2) sin (45−β))/(sin (45−β+γ)))  ⇒sin (65+γ)−cos (65+γ)=(((√2) sin 70 sin (45−β))/(sin (45−β+γ)))   ...(ii)  ⇒β=31.434768°, γ=11.434768°  ?=45−β+γ=25°

$$\frac{{AE}}{\mathrm{sin}\:\beta}=\frac{{BE}}{\mathrm{sin}\:\left(\mathrm{110}+\beta\right)}=\frac{{AB}}{\mathrm{sin}\:\mathrm{110}} \\ $$$$\Rightarrow{AE}=\frac{\mathrm{sin}\:\beta}{\mathrm{sin}\:\mathrm{70}} \\ $$$$\Rightarrow{BE}=\frac{\mathrm{sin}\:\left(\mathrm{70}−\beta\right)}{\mathrm{sin}\:\mathrm{70}} \\ $$$$\frac{{EC}}{\mathrm{sin}\:\left(\mathrm{45}−\beta\right)}=\frac{{BC}}{\mathrm{sin}\:\left(\mathrm{45}−\beta+\gamma\right)}=\frac{{BE}}{\mathrm{sin}\:\gamma} \\ $$$$\frac{\sqrt{\mathrm{2}}}{\mathrm{sin}\:\left(\mathrm{45}−\beta+\gamma\right)}=\frac{\mathrm{sin}\:\left(\mathrm{70}−\beta\right)}{\mathrm{sin}\:\mathrm{70}\:\mathrm{sin}\:\gamma} \\ $$$$\frac{\sqrt{\mathrm{2}}\:\mathrm{sin}\:\mathrm{70}}{\mathrm{sin}\:\left(\mathrm{70}−\beta\right)}=\frac{\sqrt{\mathrm{2}}\:\mathrm{cos}\:\left(\beta−\gamma\right)−\sqrt{\mathrm{2}}\:\mathrm{sin}\:\left(\beta−\gamma\right)}{\mathrm{2}\:\mathrm{sin}\:\gamma} \\ $$$$\frac{\mathrm{2}\:\mathrm{sin}\:\mathrm{70}}{\mathrm{sin}\:\left(\mathrm{70}−\beta\right)}=\frac{\mathrm{cos}\:\left(\beta−\gamma\right)−\mathrm{sin}\:\left(\beta−\gamma\right)}{\mathrm{sin}\:\gamma} \\ $$$$\frac{\mathrm{2}\:\mathrm{sin}\:\mathrm{70}}{\mathrm{sin}\:\left(\mathrm{70}−\beta\right)}=\frac{\mathrm{cos}\:\beta\:\mathrm{cos}\:\gamma+\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma−\mathrm{sin}\:\beta\:\mathrm{cos}\:\gamma+\mathrm{cos}\:\beta\:\mathrm{sin}\:\gamma}{\mathrm{sin}\:\gamma} \\ $$$$\frac{\mathrm{2}\:\mathrm{sin}\:\mathrm{70}}{\mathrm{sin}\:\left(\mathrm{70}−\beta\right)}=\mathrm{sin}\:\beta+\mathrm{cos}\:\beta+\frac{\mathrm{cos}\:\beta−\mathrm{sin}\:\beta}{\mathrm{tan}\:\gamma} \\ $$$$\Rightarrow\mathrm{tan}\:\gamma=\frac{\mathrm{cos}\:\beta−\mathrm{sin}\:\beta}{\frac{\mathrm{2}\:\mathrm{sin}\:\mathrm{70}}{\mathrm{sin}\:\left(\mathrm{70}−\beta\right)}−\mathrm{sin}\:\beta−\mathrm{cos}\:\beta}\:\:\:...\left({i}\right) \\ $$$${EC}=\frac{\sqrt{\mathrm{2}}\:\mathrm{sin}\:\left(\mathrm{45}−\beta\right)}{\mathrm{sin}\:\left(\mathrm{45}−\beta+\gamma\right)} \\ $$$$\alpha=\mathrm{180}−\mathrm{70}−\left(\mathrm{45}−\gamma\right)=\mathrm{65}+\gamma \\ $$$${AD}=\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}=\frac{\mathrm{1}}{\mathrm{tan}\:\left(\mathrm{65}+\gamma\right)} \\ $$$${DC}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{tan}\:\left(\mathrm{65}+\gamma\right)} \\ $$$$\frac{{DC}}{\mathrm{sin}\:\mathrm{70}}=\frac{{EC}}{\mathrm{sin}\:\alpha} \\ $$$$\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{70}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{tan}\:\left(\mathrm{65}+\gamma\right)}\right)=\frac{\sqrt{\mathrm{2}}\:\mathrm{sin}\:\left(\mathrm{45}−\beta\right)}{\mathrm{sin}\:\left(\mathrm{45}−\beta+\gamma\right)\mathrm{sin}\:\left(\mathrm{65}+\gamma\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{70}}\left(\mathrm{sin}\:\left(\mathrm{65}+\gamma\right)−\mathrm{cos}\:\left(\mathrm{65}+\gamma\right)\right)=\frac{\sqrt{\mathrm{2}}\:\mathrm{sin}\:\left(\mathrm{45}−\beta\right)}{\mathrm{sin}\:\left(\mathrm{45}−\beta+\gamma\right)} \\ $$$$\Rightarrow\mathrm{sin}\:\left(\mathrm{65}+\gamma\right)−\mathrm{cos}\:\left(\mathrm{65}+\gamma\right)=\frac{\sqrt{\mathrm{2}}\:\mathrm{sin}\:\mathrm{70}\:\mathrm{sin}\:\left(\mathrm{45}−\beta\right)}{\mathrm{sin}\:\left(\mathrm{45}−\beta+\gamma\right)}\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow\beta=\mathrm{31}.\mathrm{434768}°,\:\gamma=\mathrm{11}.\mathrm{434768}° \\ $$$$?=\mathrm{45}−\beta+\gamma=\mathrm{25}° \\ $$

Commented by mr W last updated on 05/Jan/21

here a check:

$${here}\:{a}\:{check}: \\ $$

Commented by mr W last updated on 05/Jan/21

Commented by Algoritm last updated on 06/Jan/21

thanks

$$\mathrm{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com