Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 128149 by MathSh last updated on 04/Jan/21

lim_(x→−1) (((2x^3 +2)/(x+2−x^2 )))^(3/(x+1)) = ?

$$\underset{{x}\rightarrow−\mathrm{1}} {{lim}}\left(\frac{\mathrm{2}{x}^{\mathrm{3}} +\mathrm{2}}{{x}+\mathrm{2}−{x}^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{{x}+\mathrm{1}}} =\:? \\ $$

Answered by liberty last updated on 04/Jan/21

 lim_(x→−1) (((2x^3 +2)/(−(x^2 −x−2))))^(3/(x+1)) =    e^(ln(lim_(x→−1) (((2((x+1)(x^2 −x+1)))/(−(x+1)(x−2))))^(3/(x+1)) ) ) =   e^(lim_(x→−1) ln (((2(x^2 −x+1))/(2−x)))^(3/(x+1)) ) =   e^(lim_(x→−1) ((3/(x+1)))ln (2)) = e^∞  = ∞

$$\:\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\left(\frac{\mathrm{2x}^{\mathrm{3}} +\mathrm{2}}{−\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\mathrm{2}\right)}\right)^{\frac{\mathrm{3}}{\mathrm{x}+\mathrm{1}}} =\: \\ $$$$\:\mathrm{e}^{\mathrm{ln}\left(\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\left(\frac{\mathrm{2}\left(\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)\right)}{−\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}−\mathrm{2}\right)}\right)^{\frac{\mathrm{3}}{\mathrm{x}+\mathrm{1}}} \right)\:} = \\ $$$$\:\mathrm{e}^{\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}ln}\:\left(\frac{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)}{\mathrm{2}−\mathrm{x}}\right)^{\frac{\mathrm{3}}{\mathrm{x}+\mathrm{1}}} } = \\ $$$$\:\mathrm{e}^{\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\left(\frac{\mathrm{3}}{\mathrm{x}+\mathrm{1}}\right)\mathrm{ln}\:\left(\mathrm{2}\right)} =\:\mathrm{e}^{\infty} \:=\:\infty \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com