Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 127682 by Dwaipayan Shikari last updated on 31/Dec/20

(π^2 /(1+(π^2 /(3−π^2 +((9π^2 )/(5−3π^2 +((25π^2 )/(7−5π^2 +((49π^( 2) )/(9−7π^2 +((81π^2 )/(11−9π^2 +((121π^2 )/(.....))))))))))))))

$$\frac{\pi^{\mathrm{2}} }{\mathrm{1}+\frac{\pi^{\mathrm{2}} }{\mathrm{3}−\pi^{\mathrm{2}} +\frac{\mathrm{9}\pi^{\mathrm{2}} }{\mathrm{5}−\mathrm{3}\pi^{\mathrm{2}} +\frac{\mathrm{25}\pi^{\mathrm{2}} }{\mathrm{7}−\mathrm{5}\pi^{\mathrm{2}} +\frac{\mathrm{49}\pi^{\:\mathrm{2}} }{\mathrm{9}−\mathrm{7}\pi^{\mathrm{2}} +\frac{\mathrm{81}\pi^{\mathrm{2}} }{\mathrm{11}−\mathrm{9}\pi^{\mathrm{2}} +\frac{\mathrm{121}\pi^{\mathrm{2}} }{.....}}}}}}} \\ $$

Commented by Dwaipayan Shikari last updated on 01/Jan/21

πtan^(−1) (π)

$$\pi{tan}^{−\mathrm{1}} \left(\pi\right) \\ $$

Commented by A8;15: last updated on 03/Jan/21

It will be nice if you show us a proof,sir!

$$\mathrm{It}\:\mathrm{will}\:\mathrm{be}\:\mathrm{nice}\:\mathrm{if}\:\mathrm{you}\:\mathrm{show}\:\mathrm{us}\:\mathrm{a}\:\mathrm{proof},\mathrm{sir}! \\ $$

Answered by Dwaipayan Shikari last updated on 03/Jan/21

tan^(−1) x=x−(x^3 /3)+(x^5 /5)−(x^7 /7)+....           =  x+x(−(x^2 /3))+x(−(x^2 /3))(−((3x^2 )/5))+x(−(x^2 /3))(−((3x^2 )/5))(−((5x^2 )/7))+..         =  (x/(1+((x^2 /3)/(1−(x^2 /3)+((x^2 /5)/(1−(x^2 /5)+((x^2 /7)/(1−(x^2 /7)+...))))))))=(x/(1+(x^2 /(3−x^2 +((3^2 x^2 )/(5−3x^2 +((5^2 x^2 )/(7−5x^2 +..))))))))  Take x=π

$${tan}^{−\mathrm{1}} {x}={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}}−\frac{{x}^{\mathrm{7}} }{\mathrm{7}}+.... \\ $$$$\:\:\:\:\:\:\:\:\:=\:\:{x}+{x}\left(−\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)+{x}\left(−\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)\left(−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{5}}\right)+{x}\left(−\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)\left(−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{5}}\right)\left(−\frac{\mathrm{5}{x}^{\mathrm{2}} }{\mathrm{7}}\right)+.. \\ $$$$\:\:\:\:\:\:\:=\:\:\frac{{x}}{\mathrm{1}+\frac{\frac{{x}^{\mathrm{2}} }{\mathrm{3}}}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{3}}+\frac{\frac{{x}^{\mathrm{2}} }{\mathrm{5}}}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{5}}+\frac{\frac{{x}^{\mathrm{2}} }{\mathrm{7}}}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{7}}+...}}}}=\frac{{x}}{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}−{x}^{\mathrm{2}} +\frac{\mathrm{3}^{\mathrm{2}} {x}^{\mathrm{2}} }{\mathrm{5}−\mathrm{3}{x}^{\mathrm{2}} +\frac{\mathrm{5}^{\mathrm{2}} {x}^{\mathrm{2}} }{\mathrm{7}−\mathrm{5}{x}^{\mathrm{2}} +..}}}} \\ $$$${Take}\:{x}=\pi \\ $$

Commented by Dwaipayan Shikari last updated on 03/Jan/21

https://en.wikipedia.org/wiki/Euler%27s_continued_fraction_formula

Commented by A8;15: last updated on 03/Jan/21

  Thanks sir. My respect for you!

$$ \\ $$$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{My}\:\mathrm{respect}\:\mathrm{for}\:\mathrm{you}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com