Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 12766 by Joel577 last updated on 01/May/17

∫ (dx/(1 + tan x))

$$\int\:\frac{{dx}}{\mathrm{1}\:+\:\mathrm{tan}\:{x}} \\ $$

Answered by sma3l2996 last updated on 01/May/17

t=tanx⇒dt=(1+tan^2 x)dx  dx=(dt/(1+t^2 ))  ∫(dx/(1+tanx))=∫(dt/((1+t)(1+t^2 )))  (1/((1+t)(1+t^2 )))=(a/(1+t))+((bt+c)/(1+t^2 ))  a=(1/2) ; c=(1/2) ; b=((−1)/2)  ∫(dt/((1+t)(1+t^2 )))=(1/2)∫(dt/(1+t))−(1/2)∫((t−1)/(1+t^2 ))dt  =(1/2)ln∣1+t∣−(1/4)∫((2t)/(1+t^2 ))dt+(1/2)∫(dt/(1+t^2 ))+c  =(1/2)ln∣1+t∣−(1/4)ln∣1+t^2 ∣+(1/2)tan^(−1) (t)+C  =(1/2)(ln∣((1+t)/(√(1+t^2 )))∣+tan^(−1) (t))+C  =(1/2)(ln∣((1+tanx)/(√(1+tan^2 x)))∣+x)+C  =(1/2)(ln∣cosx(1+tanx)∣+x)+C

$${t}={tanx}\Rightarrow{dt}=\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right){dx} \\ $$$${dx}=\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\int\frac{{dx}}{\mathrm{1}+{tanx}}=\int\frac{{dt}}{\left(\mathrm{1}+{t}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{1}+{t}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}=\frac{{a}}{\mathrm{1}+{t}}+\frac{{bt}+{c}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${a}=\frac{\mathrm{1}}{\mathrm{2}}\:;\:{c}=\frac{\mathrm{1}}{\mathrm{2}}\:;\:{b}=\frac{−\mathrm{1}}{\mathrm{2}} \\ $$$$\int\frac{{dt}}{\left(\mathrm{1}+{t}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\mathrm{1}+{t}}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{t}−\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\mathrm{1}+{t}\mid−\frac{\mathrm{1}}{\mathrm{4}}\int\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\mathrm{1}+{t}\mid−\frac{\mathrm{1}}{\mathrm{4}}{ln}\mid\mathrm{1}+{t}^{\mathrm{2}} \mid+\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left({t}\right)+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({ln}\mid\frac{\mathrm{1}+{t}}{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\mid+{tan}^{−\mathrm{1}} \left({t}\right)\right)+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({ln}\mid\frac{\mathrm{1}+{tanx}}{\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} {x}}}\mid+{x}\right)+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({ln}\mid{cosx}\left(\mathrm{1}+{tanx}\right)\mid+{x}\right)+{C} \\ $$$$ \\ $$

Commented by Joel577 last updated on 01/May/17

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com