Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 127652 by deleteduser12 last updated on 31/Dec/20

determine the coordinate of a point which is on the  3x−4y+12=0 and the distance of the point from (0,0)  is 10 unit

$${determine}\:{the}\:{coordinate}\:{of}\:{a}\:{point}\:{which}\:{is}\:{on}\:{the} \\ $$$$\mathrm{3}{x}−\mathrm{4}{y}+\mathrm{12}=\mathrm{0}\:{and}\:{the}\:{distance}\:{of}\:{the}\:{point}\:{from}\:\left(\mathrm{0},\mathrm{0}\right) \\ $$$${is}\:\mathrm{10}\:{unit} \\ $$

Answered by liberty last updated on 31/Dec/20

 let the point A(x,y) and distance = (√(x^2 +y^2 ))   x^2 +y^2  = 100 ⇒9x^2 +9y^2 =900   the line 3x = 4y−12 or 9x^2 =(4y−12)^2   we find 900−9y^2 =16y^2 −96y+144   ⇒25y^2 −96y−756=0  ⇒ y = ((96 ± (√(96^2 +75600)))/(50)) = ((96±291.23)/(50))

$$\:\mathrm{let}\:\mathrm{the}\:\mathrm{point}\:\mathrm{A}\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{and}\:\mathrm{distance}\:=\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} } \\ $$$$\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{100}\:\Rightarrow\mathrm{9x}^{\mathrm{2}} +\mathrm{9y}^{\mathrm{2}} =\mathrm{900} \\ $$$$\:\mathrm{the}\:\mathrm{line}\:\mathrm{3x}\:=\:\mathrm{4y}−\mathrm{12}\:\mathrm{or}\:\mathrm{9x}^{\mathrm{2}} =\left(\mathrm{4y}−\mathrm{12}\right)^{\mathrm{2}} \\ $$$$\mathrm{we}\:\mathrm{find}\:\mathrm{900}−\mathrm{9y}^{\mathrm{2}} =\mathrm{16y}^{\mathrm{2}} −\mathrm{96y}+\mathrm{144} \\ $$$$\:\Rightarrow\mathrm{25y}^{\mathrm{2}} −\mathrm{96y}−\mathrm{756}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{y}\:=\:\frac{\mathrm{96}\:\pm\:\sqrt{\mathrm{96}^{\mathrm{2}} +\mathrm{75600}}}{\mathrm{50}}\:=\:\frac{\mathrm{96}\pm\mathrm{291}.\mathrm{23}}{\mathrm{50}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com