Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 127604 by Algoritm last updated on 31/Dec/20

Answered by Lordose last updated on 31/Dec/20

Commented by Algoritm last updated on 31/Dec/20

?

$$? \\ $$

Answered by MJS_new last updated on 31/Dec/20

∫(x^7 /(x^(10) +a))dx=       [t=x^2  → dx=(dt/(2x))]  =(1/2)∫(t^3 /(t^5 +a))dt  now you must decompose  t^5 +a=(t+a^(1/5) )(t^2 −(((1−(√5))a^(1/5) )/2)t+a^(2/5) )(t^2 −(((1+(√5))a^(1/5) )/2)t+a^(2/5) )=       [let α=a^(1/5) ∧β=((1−(√5))/2)∧γ=((1+(√5))/2)]  =(t+α)(t^2 −αβt+α^2 )(t^2 −αγt+α^2 )  (1/2)∫(t^3 /((t+α)(t^2 −αβt+α^2 )(t^2 −αγt+α^2 )))dt=  =I_1 +I_2 +I_3 +C  I_1 =−(1/(2α(β+2)(γ+2)))∫(dt/(t+α))  I_2 =(1/(2α(β+2)(β−γ)))∫(((β+1)t−α)/(t^2 −αβt+α^2 ))dt  I_3 =−(1/(2α(β−γ)(γ+2)))∫(((γ+1)t−α)/(t^2 −αγt+α^2 ))dt  and these are easy to solve

$$\int\frac{{x}^{\mathrm{7}} }{{x}^{\mathrm{10}} +{a}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}={x}^{\mathrm{2}} \:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{2}{x}}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{t}^{\mathrm{3}} }{{t}^{\mathrm{5}} +{a}}{dt} \\ $$$$\mathrm{now}\:\mathrm{you}\:\mathrm{must}\:\mathrm{decompose} \\ $$$${t}^{\mathrm{5}} +{a}=\left({t}+{a}^{\mathrm{1}/\mathrm{5}} \right)\left({t}^{\mathrm{2}} −\frac{\left(\mathrm{1}−\sqrt{\mathrm{5}}\right){a}^{\mathrm{1}/\mathrm{5}} }{\mathrm{2}}{t}+{a}^{\mathrm{2}/\mathrm{5}} \right)\left({t}^{\mathrm{2}} −\frac{\left(\mathrm{1}+\sqrt{\mathrm{5}}\right){a}^{\mathrm{1}/\mathrm{5}} }{\mathrm{2}}{t}+{a}^{\mathrm{2}/\mathrm{5}} \right)= \\ $$$$\:\:\:\:\:\left[\mathrm{let}\:\alpha={a}^{\mathrm{1}/\mathrm{5}} \wedge\beta=\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\wedge\gamma=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right] \\ $$$$=\left({t}+\alpha\right)\left({t}^{\mathrm{2}} −\alpha\beta{t}+\alpha^{\mathrm{2}} \right)\left({t}^{\mathrm{2}} −\alpha\gamma{t}+\alpha^{\mathrm{2}} \right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{t}^{\mathrm{3}} }{\left({t}+\alpha\right)\left({t}^{\mathrm{2}} −\alpha\beta{t}+\alpha^{\mathrm{2}} \right)\left({t}^{\mathrm{2}} −\alpha\gamma{t}+\alpha^{\mathrm{2}} \right)}{dt}= \\ $$$$={I}_{\mathrm{1}} +{I}_{\mathrm{2}} +{I}_{\mathrm{3}} +{C} \\ $$$${I}_{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{2}\alpha\left(\beta+\mathrm{2}\right)\left(\gamma+\mathrm{2}\right)}\int\frac{{dt}}{{t}+\alpha} \\ $$$${I}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}\alpha\left(\beta+\mathrm{2}\right)\left(\beta−\gamma\right)}\int\frac{\left(\beta+\mathrm{1}\right){t}−\alpha}{{t}^{\mathrm{2}} −\alpha\beta{t}+\alpha^{\mathrm{2}} }{dt} \\ $$$${I}_{\mathrm{3}} =−\frac{\mathrm{1}}{\mathrm{2}\alpha\left(\beta−\gamma\right)\left(\gamma+\mathrm{2}\right)}\int\frac{\left(\gamma+\mathrm{1}\right){t}−\alpha}{{t}^{\mathrm{2}} −\alpha\gamma{t}+\alpha^{\mathrm{2}} }{dt} \\ $$$$\mathrm{and}\:\mathrm{these}\:\mathrm{are}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve} \\ $$

Commented by MJS_new last updated on 31/Dec/20

!

$$! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com