Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 12760 by tawa last updated on 30/Apr/17

Answered by mrW1 last updated on 01/May/17

Q5  total number of ways for Sofia and Tesa   each to choose one integer from 1 to 10:  10×10=100    only following choices have the feature  that one of the choosen integer is  the square of the other:  Sofia       Tesa      1                1      2                4      3                9      4                2      9                3  −−−−−−−−  there are totally 5 ways.    in an other word in the other 95 ways  neither of the choosen integer is  the square of the other, the corresponding  probability is 95/100=0.95.    ⇒Answer E

$${Q}\mathrm{5} \\ $$$${total}\:{number}\:{of}\:{ways}\:{for}\:{Sofia}\:{and}\:{Tesa}\: \\ $$$${each}\:{to}\:{choose}\:{one}\:{integer}\:{from}\:\mathrm{1}\:{to}\:\mathrm{10}: \\ $$$$\mathrm{10}×\mathrm{10}=\mathrm{100} \\ $$$$ \\ $$$${only}\:{following}\:{choices}\:{have}\:{the}\:{feature} \\ $$$${that}\:{one}\:{of}\:{the}\:{choosen}\:{integer}\:{is} \\ $$$${the}\:{square}\:{of}\:{the}\:{other}: \\ $$$${Sofia}\:\:\:\:\:\:\:{Tesa} \\ $$$$\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1} \\ $$$$\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4} \\ $$$$\:\:\:\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{9} \\ $$$$\:\:\:\:\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2} \\ $$$$\:\:\:\:\mathrm{9}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3} \\ $$$$−−−−−−−− \\ $$$${there}\:{are}\:{totally}\:\mathrm{5}\:{ways}. \\ $$$$ \\ $$$${in}\:{an}\:{other}\:{word}\:{in}\:{the}\:{other}\:\mathrm{95}\:{ways} \\ $$$${neither}\:{of}\:{the}\:{choosen}\:{integer}\:{is} \\ $$$${the}\:{square}\:{of}\:{the}\:{other},\:{the}\:{corresponding} \\ $$$${probability}\:{is}\:\mathrm{95}/\mathrm{100}=\mathrm{0}.\mathrm{95}. \\ $$$$ \\ $$$$\Rightarrow{Answer}\:{E} \\ $$

Commented by tawa last updated on 01/May/17

wow, i really appreciate sir. God bless you

$$\mathrm{wow},\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$

Answered by mrW1 last updated on 01/May/17

Q6  a=2^(1/2)   b=3^(1/3)   c=6^(1/6)     ln a=(1/2)ln 2    ln b=(1/3)ln 3=(1/3)ln 9^(1/2) >(1/3)ln 8^(1/2) =(1/3)ln 2^(3/2) =(1/2)ln 2=ln a  ⇒ln b>ln a  ⇒3^(1/3) >2^(1/2)     ln c=(1/6)ln 6=(1/2)ln 6^(1/3) <(1/2)ln 8^(1/3) =(1/2)ln 2=ln a  ⇒ln c<ln a  ⇒6^(1/6) <2^(1/2)     i.e. 6^(1/6) <2^(1/2) <3^(1/3)     ⇒ Answer C

$${Q}\mathrm{6} \\ $$$${a}=\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${b}=\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${c}=\mathrm{6}^{\frac{\mathrm{1}}{\mathrm{6}}} \\ $$$$ \\ $$$$\mathrm{ln}\:{a}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$$ \\ $$$$\mathrm{ln}\:{b}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\mathrm{3}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\mathrm{9}^{\frac{\mathrm{1}}{\mathrm{2}}} >\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\mathrm{8}^{\frac{\mathrm{1}}{\mathrm{2}}} =\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{2}}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2}=\mathrm{ln}\:{a} \\ $$$$\Rightarrow\mathrm{ln}\:{b}>\mathrm{ln}\:{a} \\ $$$$\Rightarrow\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{3}}} >\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$ \\ $$$$\mathrm{ln}\:{c}=\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\mathrm{6}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{6}^{\frac{\mathrm{1}}{\mathrm{3}}} <\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{8}^{\frac{\mathrm{1}}{\mathrm{3}}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2}=\mathrm{ln}\:{a} \\ $$$$\Rightarrow\mathrm{ln}\:{c}<\mathrm{ln}\:{a} \\ $$$$\Rightarrow\mathrm{6}^{\frac{\mathrm{1}}{\mathrm{6}}} <\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$ \\ $$$${i}.{e}.\:\mathrm{6}^{\frac{\mathrm{1}}{\mathrm{6}}} <\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} <\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$ \\ $$$$\Rightarrow\:\boldsymbol{{A}}{nswer}\:{C} \\ $$

Commented by tawa last updated on 01/May/17

Nice one, God bless you sir.

$$\mathrm{Nice}\:\mathrm{one},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com