Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 127540 by mathocean1 last updated on 30/Dec/20

m, n, ∈ N ; d is the greatest  common divisor of m and n.   we suppose m=dm′ and n=dn′   with m′ and n′ ∈ N.  show that ∃ u,v ∈ Z such   that mu−nv=d

$${m},\:{n},\:\in\:\mathbb{N}\:;\:{d}\:{is}\:{the}\:{greatest} \\ $$$${common}\:{divisor}\:{of}\:{m}\:{and}\:{n}.\: \\ $$$${we}\:{suppose}\:{m}={dm}'\:{and}\:{n}={dn}'\: \\ $$$${with}\:{m}'\:{and}\:{n}'\:\in\:\mathbb{N}. \\ $$$${show}\:{that}\:\exists\:{u},{v}\:\in\:\mathbb{Z}\:{such}\: \\ $$$${that}\:{mu}−{nv}={d} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com