Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 127109 by mohammad17 last updated on 26/Dec/20

Answered by Ar Brandon last updated on 27/Dec/20

 { ((x=rcosθ)),((y=rsinθ)) :}  l=lim_((x,y)→(0,0)) ln(((x^2 +y^2 )/(x^2 −y^2 )))    =lim_((r,θ)→(0,0)) ln((r^2 /(r^2 (cos^2 θ−sin^2 θ))))    =lim_((r,θ)→(0,0)) ln((1/(cos2θ)))=ln((1/1))=0

$$\begin{cases}{\mathrm{x}=\mathrm{rcos}\theta}\\{\mathrm{y}=\mathrm{rsin}\theta}\end{cases} \\ $$$${l}=\underset{\left(\mathrm{x},\mathrm{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}ln}\left(\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }\right) \\ $$$$\:\:=\underset{\left(\mathrm{r},\theta\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}ln}\left(\frac{\mathrm{r}^{\mathrm{2}} }{\mathrm{r}^{\mathrm{2}} \left(\mathrm{cos}^{\mathrm{2}} \theta−\mathrm{sin}^{\mathrm{2}} \theta\right)}\right) \\ $$$$\:\:=\underset{\left(\mathrm{r},\theta\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}ln}\left(\frac{\mathrm{1}}{\mathrm{cos2}\theta}\right)=\mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{1}}\right)=\mathrm{0} \\ $$

Commented by mohammad17 last updated on 28/Dec/20

put sir     0=rcosθ→either:r=0 or cosθ=0→θ=1

$${put}\:{sir}\: \\ $$$$ \\ $$$$\mathrm{0}={rcos}\theta\rightarrow{either}:{r}=\mathrm{0}\:{or}\:{cos}\theta=\mathrm{0}\rightarrow\theta=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com