Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 126777 by snipers237 last updated on 24/Dec/20

let consider (u_n ) such as u_0 ∈]0;1[ and u_(n+1) =u_n −u_n ^2    1)Prove that lim_(n→∞) ^n (√u_n ) = 1 and that the convergence domain of Σu_n x^n    is  D=[−1;1[   2) Prove that the one of Σu_n ^2 x^n  is  I=[−1;1]

$$\left.{let}\:{consider}\:\left({u}_{{n}} \right)\:{such}\:{as}\:{u}_{\mathrm{0}} \in\right]\mathrm{0};\mathrm{1}\left[\:{and}\:{u}_{{n}+\mathrm{1}} ={u}_{{n}} −{u}_{{n}} ^{\mathrm{2}} \:\right. \\ $$$$\left.\mathrm{1}\right){Prove}\:{that}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:^{{n}} \sqrt{{u}_{{n}} }\:=\:\mathrm{1}\:{and}\:{that}\:{the}\:{convergence}\:{domain}\:{of}\:\Sigma{u}_{{n}} {x}^{{n}} \: \\ $$$${is}\:\:{D}=\left[−\mathrm{1};\mathrm{1}\left[\:\right.\right. \\ $$$$\left.\mathrm{2}\right)\:{Prove}\:{that}\:{the}\:{one}\:{of}\:\Sigma{u}_{{n}} ^{\mathrm{2}} {x}^{{n}} \:{is}\:\:{I}=\left[−\mathrm{1};\mathrm{1}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com