Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 126484 by Mathgreat last updated on 20/Dec/20

Commented by MJS_new last updated on 20/Dec/20

≈1.63507847

$$\approx\mathrm{1}.\mathrm{63507847} \\ $$

Commented by Mathgreat last updated on 20/Dec/20

yechim.

$${yechim}. \\ $$$$ \\ $$

Commented by Mathgreat last updated on 20/Dec/20

prove

$${prove} \\ $$

Commented by MJS_new last updated on 20/Dec/20

just use a calculator  f(x)=x^x^x  −3  f(1)=−2  f(2)=16  ⇒ 1<x<2  f(1.5)≈−.89  ⇒ 1.5<x<2  f(1.6)≈−.29  ⇒ 1.6<x<2  f(1.7)≈.70  ⇒ 1.6<x<1.7  ...

$$\mathrm{just}\:\mathrm{use}\:\mathrm{a}\:\mathrm{calculator} \\ $$$${f}\left({x}\right)={x}^{{x}^{{x}} } −\mathrm{3} \\ $$$${f}\left(\mathrm{1}\right)=−\mathrm{2} \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{16} \\ $$$$\Rightarrow\:\mathrm{1}<{x}<\mathrm{2} \\ $$$${f}\left(\mathrm{1}.\mathrm{5}\right)\approx−.\mathrm{89} \\ $$$$\Rightarrow\:\mathrm{1}.\mathrm{5}<{x}<\mathrm{2} \\ $$$${f}\left(\mathrm{1}.\mathrm{6}\right)\approx−.\mathrm{29} \\ $$$$\Rightarrow\:\mathrm{1}.\mathrm{6}<{x}<\mathrm{2} \\ $$$${f}\left(\mathrm{1}.\mathrm{7}\right)\approx.\mathrm{70} \\ $$$$\Rightarrow\:\mathrm{1}.\mathrm{6}<{x}<\mathrm{1}.\mathrm{7} \\ $$$$... \\ $$

Commented by MJS_new last updated on 20/Dec/20

x^x^3  =3 is not the same as x^x^x  =3

$${x}^{{x}^{\mathrm{3}} } =\mathrm{3}\:\mathrm{is}\:\mathrm{not}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:{x}^{{x}^{{x}} } =\mathrm{3} \\ $$

Commented by MathSh last updated on 20/Dec/20

x^x^3  =3  log_x x^x^3  =log_x 3  (log_x 3)^((log_x 3)) =3^3   x^3 =3  x=(3)^(1/3)

$${x}^{{x}^{\mathrm{3}} } =\mathrm{3} \\ $$$${log}_{{x}} {x}^{{x}^{\mathrm{3}} } ={log}_{{x}} \mathrm{3} \\ $$$$\left({log}_{{x}} \mathrm{3}\right)^{\left({log}_{{x}} \mathrm{3}\right)} =\mathrm{3}^{\mathrm{3}} \\ $$$${x}^{\mathrm{3}} =\mathrm{3} \\ $$$${x}=\sqrt[{\mathrm{3}}]{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com