Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 125845 by joki last updated on 14/Dec/20

use subtitution x=a sinθ to find ∫(1/( (√(9−x^2 ))))

$${use}\:{subtitution}\:{x}={a}\:{sin}\theta\:{to}\:{find}\:\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }} \\ $$

Answered by MJS_new last updated on 14/Dec/20

∫(dx/( (√(9−x^2 ))))=       [x=3sin θ ⇔ θ=arcsin (x/3) → dx=(√(9−x^2 ))dθ]  =∫dθ=θ=arcsin (x/3) +C

$$\int\frac{{dx}}{\:\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }}= \\ $$$$\:\:\:\:\:\left[{x}=\mathrm{3sin}\:\theta\:\Leftrightarrow\:\theta=\mathrm{arcsin}\:\frac{{x}}{\mathrm{3}}\:\rightarrow\:{dx}=\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }{d}\theta\right] \\ $$$$=\int{d}\theta=\theta=\mathrm{arcsin}\:\frac{{x}}{\mathrm{3}}\:+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com