Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 125686 by mathocean1 last updated on 12/Dec/20

show that  cos((4π)/5)+cos((2π)/5)+1=0

$${show}\:{that} \\ $$$${cos}\frac{\mathrm{4}\pi}{\mathrm{5}}+{cos}\frac{\mathrm{2}\pi}{\mathrm{5}}+\mathrm{1}=\mathrm{0} \\ $$

Commented by bramlexs22 last updated on 13/Dec/20

cos ((4π)/5) = cos (π−(π/5))=−cos (π/5)  cos ((4π)/5) = −cos 36°   cos ((2π)/5) = cos 72°  (•) cos ((4π)/5)+cos ((2π)/5)= −cos 36°+cos  72°          = −2sin 54° sin 18°           = −2cos 36° sin 18°          = −2(1−2sin^2 18°)sin 18°          = −2(1−2((((√5)−1)/4))^2 )((((√5)−1)/4))          =−2(1−2(((3−(√5))/8)))((((√5)−1)/4))         =−2(1−(((3−(√5))/4)))((((√5)−1)/4))        =−2((((√5)+1)/4))((((√5)−1)/4))= −(1/2)   cos ((4π)/5)+cos ((2π)/5)+1=−(1/2)+1=(1/2)

$$\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{5}}\:=\:\mathrm{cos}\:\left(\pi−\frac{\pi}{\mathrm{5}}\right)=−\mathrm{cos}\:\frac{\pi}{\mathrm{5}} \\ $$$$\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{5}}\:=\:−\mathrm{cos}\:\mathrm{36}°\: \\ $$$$\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{5}}\:=\:\mathrm{cos}\:\mathrm{72}° \\ $$$$\left(\bullet\right)\:\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{5}}+\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{5}}=\:−\mathrm{cos}\:\mathrm{36}°+\mathrm{cos}\:\:\mathrm{72}° \\ $$$$\:\:\:\:\:\:\:\:=\:−\mathrm{2sin}\:\mathrm{54}°\:\mathrm{sin}\:\mathrm{18}°\: \\ $$$$\:\:\:\:\:\:\:\:=\:−\mathrm{2cos}\:\mathrm{36}°\:\mathrm{sin}\:\mathrm{18}° \\ $$$$\:\:\:\:\:\:\:\:=\:−\mathrm{2}\left(\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{18}°\right)\mathrm{sin}\:\mathrm{18}° \\ $$$$\:\:\:\:\:\:\:\:=\:−\mathrm{2}\left(\mathrm{1}−\mathrm{2}\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} \right)\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\:\:\:\:\:\:\:\:=−\mathrm{2}\left(\mathrm{1}−\mathrm{2}\left(\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{8}}\right)\right)\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\:\:\:\:\:\:\:=−\mathrm{2}\left(\mathrm{1}−\left(\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{4}}\right)\right)\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\:\:\:\:\:\:=−\mathrm{2}\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}}\right)\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}\right)=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{5}}+\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{5}}+\mathrm{1}=−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com