Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 125577 by ajfour last updated on 12/Dec/20

Commented by ajfour last updated on 12/Dec/20

If the cubic curve′s eq.  is  y=x^3 −x−c  and parabola′s eq. is   y=(x−h)^2 +((2/(3(√3)))−c) , then  with the help of a suitable values  of h and s,  find the positive root,  x=p  of the cubic.

$${If}\:{the}\:{cubic}\:{curve}'{s}\:{eq}.\:\:{is} \\ $$$${y}={x}^{\mathrm{3}} −{x}−{c} \\ $$$${and}\:{parabola}'{s}\:{eq}.\:{is}\: \\ $$$${y}=\left({x}−{h}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}−{c}\right)\:,\:{then} \\ $$$${with}\:{the}\:{help}\:{of}\:{a}\:{suitable}\:{values} \\ $$$${of}\:{h}\:{and}\:{s}, \\ $$$${find}\:{the}\:{positive}\:{root},\:\:{x}={p} \\ $$$${of}\:{the}\:{cubic}. \\ $$

Answered by ajfour last updated on 12/Dec/20

y=x^3 −x−c  y=(x−h)^2 +k    p^3 =p+c  ..(i)  (s−h)^2 +k=s^3 −s−c  let  s=p+m  ⇒  p^3 +3mp^2 +3m^2 p+m^3 −p−m−c−k   −p^2 −2mp−m^2 +2hp+2mh−h^2 =0   let  3m=1_(−)   ⇒  p(2h−(1/3))−(8/(27))−k−(h−(1/3))^2 =0  ⇒  p=(((h−(1/3))^2 +k+(8/(27)))/(2h−(1/3)))  but   p^3 =p+c   ⇒  {(h−(1/3))^2 +k+(8/(27))}^3     ={(h−(1/3))^2 +k+(8/(27))}(2h−(1/3))^2           +c(2h−(1/3))^3   let  k=((2h)/3)    (h^2 +((11)/(27)))^3 =(h^2 +((11)/(27)))(2h−(1/3))^2                                   +c(2h−(1/3))^3    (h^2 +((11)/(27)))(h^4 +((22h^2 )/(27))+((121)/(729))−4h^2 +((4h)/3)−(1/9))             =c(2h−(1/3))^3   .....

$${y}={x}^{\mathrm{3}} −{x}−{c} \\ $$$${y}=\left({x}−{h}\right)^{\mathrm{2}} +{k}\:\: \\ $$$${p}^{\mathrm{3}} ={p}+{c}\:\:..\left({i}\right) \\ $$$$\left({s}−{h}\right)^{\mathrm{2}} +{k}={s}^{\mathrm{3}} −{s}−{c} \\ $$$${let}\:\:{s}={p}+{m}\:\:\Rightarrow \\ $$$${p}^{\mathrm{3}} +\mathrm{3}{mp}^{\mathrm{2}} +\mathrm{3}{m}^{\mathrm{2}} {p}+{m}^{\mathrm{3}} −{p}−{m}−{c}−{k} \\ $$$$\:−{p}^{\mathrm{2}} −\mathrm{2}{mp}−{m}^{\mathrm{2}} +\mathrm{2}{hp}+\mathrm{2}{mh}−{h}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\underset{−} {{let}\:\:\mathrm{3}{m}=\mathrm{1}}\:\:\Rightarrow \\ $$$${p}\left(\mathrm{2}{h}−\frac{\mathrm{1}}{\mathrm{3}}\right)−\frac{\mathrm{8}}{\mathrm{27}}−{k}−\left({h}−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:\:{p}=\frac{\left({h}−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} +{k}+\frac{\mathrm{8}}{\mathrm{27}}}{\mathrm{2}{h}−\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${but}\:\:\:{p}^{\mathrm{3}} ={p}+{c}\:\:\:\Rightarrow \\ $$$$\left\{\left({h}−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} +{k}+\frac{\mathrm{8}}{\mathrm{27}}\right\}^{\mathrm{3}} \\ $$$$\:\:=\left\{\left({h}−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} +{k}+\frac{\mathrm{8}}{\mathrm{27}}\right\}\left(\mathrm{2}{h}−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:+{c}\left(\mathrm{2}{h}−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{3}} \\ $$$${let}\:\:{k}=\frac{\mathrm{2}{h}}{\mathrm{3}} \\ $$$$\:\:\left({h}^{\mathrm{2}} +\frac{\mathrm{11}}{\mathrm{27}}\right)^{\mathrm{3}} =\left({h}^{\mathrm{2}} +\frac{\mathrm{11}}{\mathrm{27}}\right)\left(\mathrm{2}{h}−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{c}\left(\mathrm{2}{h}−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{3}} \\ $$$$\:\left({h}^{\mathrm{2}} +\frac{\mathrm{11}}{\mathrm{27}}\right)\left({h}^{\mathrm{4}} +\frac{\mathrm{22}{h}^{\mathrm{2}} }{\mathrm{27}}+\frac{\mathrm{121}}{\mathrm{729}}−\mathrm{4}{h}^{\mathrm{2}} +\frac{\mathrm{4}{h}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{9}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:={c}\left(\mathrm{2}{h}−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{3}} \\ $$$$..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com