Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 125458 by mnjuly1970 last updated on 11/Dec/20

                  ...advanced  calculus...          evaluate :::                      Σ_(n=2) ^∞ { ((ζ (2n ))/2^( n) ) } =??

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:{calculus}... \\ $$$$\:\:\:\:\:\:\:\:{evaluate}\:::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left\{\:\frac{\zeta\:\left(\mathrm{2}{n}\:\right)}{\mathrm{2}^{\:{n}} }\:\right\}\:=?? \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 11/Dec/20

Σ_(n=2) ^∞ Σ_(k=1) ^∞ (1/(2^n k^(2n) ))=Σ_(k=1) ^∞ Σ_(n≥1) ^∞ (1/(2^n (k^2 )^n ))=Σ_(k=1) ^∞ ((1/(4k^4 ))/(1−(1/(2k^2 ))))  =Σ_(k=1) ^∞ (1/(2k^2 −1))=Σ_(k=1) ^∞ (1/(2k^2 (2k^2 −1)))  =Σ^∞ (1/(2k^2 −1))−(1/(2k^2 ))=(1/2)Σ^∞ (1/(k^2 −(1/2)))−(π^2 /(12))  =(1/(2(√2)))Σ^∞ (1/(k−(1/( (√2)))))−(1/(k+(1/( (√2)))))−(π^2 /(12)) =(1/(2(√2)))(ψ(1+(1/( (√2))))−ψ(1−(1/( (√2)))))−(π^2 /(12))  ∼0.52

$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{n}} {k}^{\mathrm{2}{n}} }=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{n}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{n}} \left({k}^{\mathrm{2}} \right)^{{n}} }=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\frac{\mathrm{1}}{\mathrm{4}{k}^{\mathrm{4}} }}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{k}^{\mathrm{2}} }} \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}^{\mathrm{2}} −\mathrm{1}}=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}^{\mathrm{2}} \left(\mathrm{2}{k}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$$$=\overset{\infty} {\sum}\frac{\mathrm{1}}{\mathrm{2}{k}^{\mathrm{2}} −\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{k}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}\overset{\infty} {\sum}\frac{\mathrm{1}}{{k}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}}−\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\overset{\infty} {\sum}\frac{\mathrm{1}}{{k}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}−\frac{\mathrm{1}}{{k}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left(\psi\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)−\psi\left(\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$$$\sim\mathrm{0}.\mathrm{52} \\ $$

Commented by Dwaipayan Shikari last updated on 11/Dec/20

ζ(2n)=(((−1)^(n+1) β_(2n) (2π)^(2n) )/(2(2n)!))  Σ_(n=2) ^∞ (((−1)^(n+1) β_(2n) (2π)^(2n) )/(2^(n+1) (2n)!))=(1/2)Σ_(n=2) ^∞ (((−1)^(n+1) 𝛃_(2n) (2𝛑^2 )^n )/((2n)!))  𝛃_n −Bernoulli Number

$$\zeta\left(\mathrm{2}{n}\right)=\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \beta_{\mathrm{2}{n}} \left(\mathrm{2}\pi\right)^{\mathrm{2}{n}} }{\mathrm{2}\left(\mathrm{2}{n}\right)!} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \beta_{\mathrm{2}{n}} \left(\mathrm{2}\pi\right)^{\mathrm{2}{n}} }{\mathrm{2}^{{n}+\mathrm{1}} \left(\mathrm{2}{n}\right)!}=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}+\mathrm{1}} \boldsymbol{\beta}_{\mathrm{2}\boldsymbol{{n}}} \left(\mathrm{2}\boldsymbol{\pi}^{\mathrm{2}} \right)^{{n}} }{\left(\mathrm{2}{n}\right)!} \\ $$$$\boldsymbol{\beta}_{\boldsymbol{{n}}} −\boldsymbol{{Bernoulli}}\:\boldsymbol{{Number}} \\ $$

Commented by mnjuly1970 last updated on 11/Dec/20

peace be upon you...

$${peace}\:{be}\:{upon}\:{you}... \\ $$

Commented by Dwaipayan Shikari last updated on 11/Dec/20

Is it right?(My answer)

$${Is}\:{it}\:{right}?\left({My}\:{answer}\right) \\ $$

Commented by mnjuly1970 last updated on 11/Dec/20

yes of course .         but original question was as below.     Σ_(n=2) ^∞ ((ζ(n))/2^n ) =^(??) log(2)...

$${yes}\:{of}\:{course}\:.\: \\ $$$$ \\ $$$$\:\:\:\:{but}\:{original}\:{question}\:{was}\:{as}\:{below}. \\ $$$$\:\:\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\zeta\left({n}\right)}{\mathrm{2}^{{n}} }\:\overset{??} {=}{log}\left(\mathrm{2}\right)... \\ $$

Commented by Dwaipayan Shikari last updated on 11/Dec/20

Σ^∞ ((ζ(n))/2^n )=Σ_(k=1) ^∞ Σ_(n=2) ^∞ (1/((2k)^n ))=Σ_(k=1) ^∞ (1/(2k(2k−1)))=1−(1/2)+(1/3)−(1/4)+..=log(2)

$$\overset{\infty} {\sum}\frac{\zeta\left({n}\right)}{\mathrm{2}^{{n}} }=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{k}\right)^{{n}} }=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}\left(\mathrm{2}{k}−\mathrm{1}\right)}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+..={log}\left(\mathrm{2}\right) \\ $$

Commented by mnjuly1970 last updated on 11/Dec/20

perfect..

$${perfect}.. \\ $$

Commented by Dwaipayan Shikari last updated on 11/Dec/20

With pleasure

$${With}\:{pleasure} \\ $$

Answered by mathmax by abdo last updated on 11/Dec/20

Σ_(n=2) ^∞ ((ξ(2n))/2^n ) =Σ_(n=2) ^∞ (1/2^n )Σ_(k=1) ^∞   (1/k^(2n) ) =Σ_(k=1) ^∞ Σ_(n=2) ^∞ (1/2^n )(1/((k^2 )^n ))  =Σ_(k=1) ^∞ Σ_(n=2) ^∞ ((1/(2k^2 )))^n   =Σ_(k=1) ^∞ Σ_(p=0) ^∞ ((1/(2k^2 )))^(p+2)   =Σ_(k=1) ^∞  (1/(4k^4 ))Σ_(p=0) ^∞  ((1/(2k^2 )))^p  =Σ_(k=1) ^∞  (1/(4k^4 ))×(1/(1−(1/(2k^2 ))))  =Σ_(k=1) ^∞  ((2k^2 )/(4k^4 (2k^2 −1))) =Σ_(k=1) ^∞   (1/(2k^2 (2k^2 −1)))  =Σ_(k=1) ^∞ ((1/(2k^2 −1))−(1/(2k^2 )))=Σ_(k=1) ^∞ (1/(2k^2 −1))−(1/2)×(π^2 /6)  =Σ_(k=1) ^∞  (1/(2k^2 −1))−(π^2 /(12))  rest to find value of Σ_(k=1) ^∞  (1/(2k^2 −1))  ...be continued...

$$\sum_{\mathrm{n}=\mathrm{2}} ^{\infty} \frac{\xi\left(\mathrm{2n}\right)}{\mathrm{2}^{\mathrm{n}} }\:=\sum_{\mathrm{n}=\mathrm{2}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\sum_{\mathrm{k}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2n}} }\:=\sum_{\mathrm{k}=\mathrm{1}} ^{\infty} \sum_{\mathrm{n}=\mathrm{2}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\frac{\mathrm{1}}{\left(\mathrm{k}^{\mathrm{2}} \right)^{\mathrm{n}} } \\ $$$$=\sum_{\mathrm{k}=\mathrm{1}} ^{\infty} \sum_{\mathrm{n}=\mathrm{2}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{2k}^{\mathrm{2}} }\right)^{\mathrm{n}} \:\:=\sum_{\mathrm{k}=\mathrm{1}} ^{\infty} \sum_{\mathrm{p}=\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{2k}^{\mathrm{2}} }\right)^{\mathrm{p}+\mathrm{2}} \\ $$$$=\sum_{\mathrm{k}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{4k}^{\mathrm{4}} }\sum_{\mathrm{p}=\mathrm{0}} ^{\infty} \:\left(\frac{\mathrm{1}}{\mathrm{2k}^{\mathrm{2}} }\right)^{\mathrm{p}} \:=\sum_{\mathrm{k}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{4k}^{\mathrm{4}} }×\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2k}^{\mathrm{2}} }} \\ $$$$=\sum_{\mathrm{k}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{2k}^{\mathrm{2}} }{\mathrm{4k}^{\mathrm{4}} \left(\mathrm{2k}^{\mathrm{2}} −\mathrm{1}\right)}\:=\sum_{\mathrm{k}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\mathrm{2k}^{\mathrm{2}} \left(\mathrm{2k}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$$$=\sum_{\mathrm{k}=\mathrm{1}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{2k}^{\mathrm{2}} −\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2k}^{\mathrm{2}} }\right)=\sum_{\mathrm{k}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2k}^{\mathrm{2}} −\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$=\sum_{\mathrm{k}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2k}^{\mathrm{2}} −\mathrm{1}}−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\:\:\mathrm{rest}\:\mathrm{to}\:\mathrm{find}\:\mathrm{value}\:\mathrm{of}\:\sum_{\mathrm{k}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2k}^{\mathrm{2}} −\mathrm{1}} \\ $$$$...\mathrm{be}\:\mathrm{continued}... \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 11/Dec/20

thanks alot sir...

$${thanks}\:{alot}\:{sir}... \\ $$

Commented by mathmax by abdo last updated on 11/Dec/20

you are welcome sir.

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com