Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 12525 by tawa last updated on 24/Apr/17

Use the substitution  t = sin(θ) to solve the equation   2sin^4 (θ) − 9sin^3 (θ) + 14sin^2 (θ) − 9sin(θ) + 2 = 0,    for possible values of θ in the range  0 ≤ θ ≤ 2π

$$\mathrm{Use}\:\mathrm{the}\:\mathrm{substitution}\:\:\mathrm{t}\:=\:\mathrm{sin}\left(\theta\right)\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\mathrm{2sin}^{\mathrm{4}} \left(\theta\right)\:−\:\mathrm{9sin}^{\mathrm{3}} \left(\theta\right)\:+\:\mathrm{14sin}^{\mathrm{2}} \left(\theta\right)\:−\:\mathrm{9sin}\left(\theta\right)\:+\:\mathrm{2}\:=\:\mathrm{0},\:\: \\ $$$$\mathrm{for}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:\theta\:\mathrm{in}\:\mathrm{the}\:\mathrm{range}\:\:\mathrm{0}\:\leqslant\:\theta\:\leqslant\:\mathrm{2}\pi \\ $$

Answered by mrW1 last updated on 24/Apr/17

x=sin θ  2x^4 −9x^3 +14x^2 −9x+2=0  (2x−1)(x^3 −4x^2 +5x−2)=0  (2x−1)(x−2)(x^2 −2x+1)=0x  (2x−1)(x−2)(x−1)^2 =0  ⇒x=(1/2)⇒θ=(π/6),((5π)/6)  ⇒x=2 (no solution, since −1≤x≤1)  ⇒x=1⇒θ=(π/2)

$${x}=\mathrm{sin}\:\theta \\ $$$$\mathrm{2}{x}^{\mathrm{4}} −\mathrm{9}{x}^{\mathrm{3}} +\mathrm{14}{x}^{\mathrm{2}} −\mathrm{9}{x}+\mathrm{2}=\mathrm{0} \\ $$$$\left(\mathrm{2}{x}−\mathrm{1}\right)\left({x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\left(\mathrm{2}{x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}\right)=\mathrm{0}{x} \\ $$$$\left(\mathrm{2}{x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\theta=\frac{\pi}{\mathrm{6}},\frac{\mathrm{5}\pi}{\mathrm{6}} \\ $$$$\Rightarrow{x}=\mathrm{2}\:\left({no}\:{solution},\:{since}\:−\mathrm{1}\leqslant{x}\leqslant\mathrm{1}\right) \\ $$$$\Rightarrow{x}=\mathrm{1}\Rightarrow\theta=\frac{\pi}{\mathrm{2}} \\ $$

Commented by tawa last updated on 24/Apr/17

God bless you sir. Thanks for the help.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{the}\:\mathrm{help}. \\ $$

Answered by sma3l2996 last updated on 24/Apr/17

let t=sinθ  2t^4 −9t^3 +14t^2 −9t+2=0  (t−1)(t−2)(at^2 +bt+c)=0  ⇔(t^2 −3t+2)(at^2 +bt+c)=0  ⇔at^4 +bt^3 +ct^2 −3at^3 −3bt^2 −3ct+2at^2 +2bt+2c=0  a=2 ; 2c=2 ; b−3a=−9  a=2 ; c=1 ; b=−3  so 2t^4 −9t^3 +14t^2 −9t+2=(t−1)(t−2)(2t^2 −3t+1)=0  2t^2 −3t+1=0  t=1 or t=(1/2)  sinθ=1 or sinθ=(1/2) or sinθ=2 and that impossible  θ=(π/2) or θ=(π/6) or θ=((5π)/6)

$${let}\:{t}={sin}\theta \\ $$$$\mathrm{2}{t}^{\mathrm{4}} −\mathrm{9}{t}^{\mathrm{3}} +\mathrm{14}{t}^{\mathrm{2}} −\mathrm{9}{t}+\mathrm{2}=\mathrm{0} \\ $$$$\left({t}−\mathrm{1}\right)\left({t}−\mathrm{2}\right)\left({at}^{\mathrm{2}} +{bt}+{c}\right)=\mathrm{0} \\ $$$$\Leftrightarrow\left({t}^{\mathrm{2}} −\mathrm{3}{t}+\mathrm{2}\right)\left({at}^{\mathrm{2}} +{bt}+{c}\right)=\mathrm{0} \\ $$$$\Leftrightarrow{at}^{\mathrm{4}} +{bt}^{\mathrm{3}} +{ct}^{\mathrm{2}} −\mathrm{3}{at}^{\mathrm{3}} −\mathrm{3}{bt}^{\mathrm{2}} −\mathrm{3}{ct}+\mathrm{2}{at}^{\mathrm{2}} +\mathrm{2}{bt}+\mathrm{2}{c}=\mathrm{0} \\ $$$${a}=\mathrm{2}\:;\:\mathrm{2}{c}=\mathrm{2}\:;\:{b}−\mathrm{3}{a}=−\mathrm{9} \\ $$$${a}=\mathrm{2}\:;\:{c}=\mathrm{1}\:;\:{b}=−\mathrm{3} \\ $$$${so}\:\mathrm{2}{t}^{\mathrm{4}} −\mathrm{9}{t}^{\mathrm{3}} +\mathrm{14}{t}^{\mathrm{2}} −\mathrm{9}{t}+\mathrm{2}=\left({t}−\mathrm{1}\right)\left({t}−\mathrm{2}\right)\left(\mathrm{2}{t}^{\mathrm{2}} −\mathrm{3}{t}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{2}{t}^{\mathrm{2}} −\mathrm{3}{t}+\mathrm{1}=\mathrm{0} \\ $$$${t}=\mathrm{1}\:{or}\:{t}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${sin}\theta=\mathrm{1}\:{or}\:{sin}\theta=\frac{\mathrm{1}}{\mathrm{2}}\:{or}\:{sin}\theta=\mathrm{2}\:{and}\:{that}\:{impossible} \\ $$$$\theta=\frac{\pi}{\mathrm{2}}\:{or}\:\theta=\frac{\pi}{\mathrm{6}}\:{or}\:\theta=\frac{\mathrm{5}\pi}{\mathrm{6}} \\ $$

Commented by tawa last updated on 24/Apr/17

God bless you sir. Thanks for the help.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{the}\:\mathrm{help}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com