Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 125208 by liberty last updated on 09/Dec/20

There are 12 students in a party. Five of  them are girls. In how many ways can   these 12 students be arranged in a row if   (i) there are no restrictions?  (ii) the 5 girls must be together (forming a block)?  (iii) no 2 girls are adjacent   (iv) between two particular boys A and B    , there no boys but exactly 3 girls?

$${There}\:{are}\:\mathrm{12}\:{students}\:{in}\:{a}\:{party}.\:{Five}\:{of} \\ $$$${them}\:{are}\:{girls}.\:{In}\:{how}\:{many}\:{ways}\:{can}\: \\ $$$${these}\:\mathrm{12}\:{students}\:{be}\:{arranged}\:{in}\:{a}\:{row}\:{if}\: \\ $$$$\left({i}\right)\:{there}\:{are}\:{no}\:{restrictions}? \\ $$$$\left({ii}\right)\:{the}\:\mathrm{5}\:{girls}\:{must}\:{be}\:{together}\:\left({forming}\:{a}\:{block}\right)? \\ $$$$\left({iii}\right)\:{no}\:\mathrm{2}\:{girls}\:{are}\:{adjacent}\: \\ $$$$\left({iv}\right)\:{between}\:{two}\:{particular}\:{boys}\:{A}\:{and}\:{B}\: \\ $$$$\:,\:{there}\:{no}\:{boys}\:{but}\:{exactly}\:\mathrm{3}\:{girls}? \\ $$

Answered by john_santu last updated on 09/Dec/20

(i) 12!   (ii) 5! (7+1)! = 5! 8!  (iii) −_1  G_1  −_2 ^x  G_2  −_3 ^x G_3  −_4 ^x  G_4  −_5 ^x  G_5  −_6    = 5! 7!  (((6+3−1)),((       3)) ) = 5! 7!  ((8),(3) )  (iv) AGGGB−−−−−−−            −AGGGB−−−−−−            −−AGGGB−−−−−            −−−AGGGB−−−−            −−−−AGGGB−−−            −−−−−AGGGB−−            −−−−−−AGGGB−            −−−−−−−AGGGB   the number of ways is    = 2×8×C_3 ^( 5) ×3!×7!   =12×8! ×10 = 120×8!

$$\left({i}\right)\:\mathrm{12}!\: \\ $$$$\left({ii}\right)\:\mathrm{5}!\:\left(\mathrm{7}+\mathrm{1}\right)!\:=\:\mathrm{5}!\:\mathrm{8}! \\ $$$$\left({iii}\right)\:\underset{\mathrm{1}} {−}\:{G}_{\mathrm{1}} \:\underset{\mathrm{2}} {\overset{{x}} {−}}\:{G}_{\mathrm{2}} \:\underset{\mathrm{3}} {\overset{{x}} {−}}{G}_{\mathrm{3}} \:\underset{\mathrm{4}} {\overset{{x}} {−}}\:{G}_{\mathrm{4}} \:\underset{\mathrm{5}} {\overset{{x}} {−}}\:{G}_{\mathrm{5}} \:\underset{\mathrm{6}} {−} \\ $$$$\:=\:\mathrm{5}!\:\mathrm{7}!\:\begin{pmatrix}{\mathrm{6}+\mathrm{3}−\mathrm{1}}\\{\:\:\:\:\:\:\:\mathrm{3}}\end{pmatrix}\:=\:\mathrm{5}!\:\mathrm{7}!\:\begin{pmatrix}{\mathrm{8}}\\{\mathrm{3}}\end{pmatrix} \\ $$$$\left({iv}\right)\:{AGGGB}−−−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:−{AGGGB}−−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:−−{AGGGB}−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:−−−{AGGGB}−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:−−−−{AGGGB}−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:−−−−−{AGGGB}−− \\ $$$$\:\:\:\:\:\:\:\:\:\:−−−−−−{AGGGB}− \\ $$$$\:\:\:\:\:\:\:\:\:\:−−−−−−−{AGGGB} \\ $$$$\:{the}\:{number}\:{of}\:{ways}\:{is}\: \\ $$$$\:=\:\mathrm{2}×\mathrm{8}×{C}_{\mathrm{3}} ^{\:\mathrm{5}} ×\mathrm{3}!×\mathrm{7}! \\ $$$$\:=\mathrm{12}×\mathrm{8}!\:×\mathrm{10}\:=\:\mathrm{120}×\mathrm{8}! \\ $$

Commented by liberty last updated on 09/Dec/20

yes..correct..thanks

$${yes}..{correct}..{thanks} \\ $$

Commented by malwan last updated on 16/Jan/21

please  I can′t understand number(iii)   (((6+3−1)),(3) ) what is it?6? 3?  if girls =3 and boys=6 then  what is the solution?  and what if girls=n and  boys=m ; m>n?

$${please} \\ $$$${I}\:{can}'{t}\:{understand}\:{number}\left({iii}\right) \\ $$$$\begin{pmatrix}{\mathrm{6}+\mathrm{3}−\mathrm{1}}\\{\mathrm{3}}\end{pmatrix}\:{what}\:{is}\:{it}?\mathrm{6}?\:\mathrm{3}? \\ $$$${if}\:{girls}\:=\mathrm{3}\:{and}\:{boys}=\mathrm{6}\:{then} \\ $$$${what}\:{is}\:{the}\:{solution}? \\ $$$${and}\:{what}\:{if}\:{girls}={n}\:{and} \\ $$$${boys}={m}\:;\:{m}>{n}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com