Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 125185 by bemath last updated on 08/Dec/20

  { (((√x) + y = 11)),((x + (√y) = 7 )) :}

$$\:\begin{cases}{\sqrt{{x}}\:+\:{y}\:=\:\mathrm{11}}\\{{x}\:+\:\sqrt{{y}}\:=\:\mathrm{7}\:}\end{cases} \\ $$

Answered by Olaf last updated on 09/Dec/20

   { (((√x)+y = 11 (1))),((x+(√y) = 7 (2))) :}  (4,9) is a quite evident solution.  (2) : (√y) = 7−x  ⇒ y = x^2 −14x+49  (1) : (√x)+x^2 −14x+49 = 11  x^2 −14x+ (√x)+38 = 0 (3)  Let X = (√x)  x = 4 is a root ⇒ X = 2 is a root  (3) : X^4 −14X^2 +X+38 = 0  (X−2)(X^3 +2X^2 −10X−19) = 0  Let f(X) = X^3 +2X^2 −10X−19  f′(X) = 3X^2 +4X−10  f′(X) = 3(X^2 +(4/3)X−((10)/3))  f′(X) = 3(X+((2+(√(34)))/3))(X+((2−(√(34)))/3))  ...etc  f admit one real positive root :  X = (1/3)(14+((3194+3(√(334731))))^(1/3) +((193(4)^(1/3) )/( ((6388+6(√(334731))))^(1/3) ))]  X ≈ 14,119789502  ⇒ x > 196 ⇒ y < 0 : impossible !    Finally, only one solution (x,y) = (4,9)

$$ \\ $$$$\begin{cases}{\sqrt{{x}}+{y}\:=\:\mathrm{11}\:\left(\mathrm{1}\right)}\\{{x}+\sqrt{{y}}\:=\:\mathrm{7}\:\left(\mathrm{2}\right)}\end{cases} \\ $$$$\left(\mathrm{4},\mathrm{9}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{quite}\:\mathrm{evident}\:\mathrm{solution}. \\ $$$$\left(\mathrm{2}\right)\::\:\sqrt{{y}}\:=\:\mathrm{7}−{x} \\ $$$$\Rightarrow\:{y}\:=\:{x}^{\mathrm{2}} −\mathrm{14}{x}+\mathrm{49} \\ $$$$\left(\mathrm{1}\right)\::\:\sqrt{{x}}+{x}^{\mathrm{2}} −\mathrm{14}{x}+\mathrm{49}\:=\:\mathrm{11} \\ $$$${x}^{\mathrm{2}} −\mathrm{14}{x}+\:\sqrt{{x}}+\mathrm{38}\:=\:\mathrm{0}\:\left(\mathrm{3}\right) \\ $$$$\mathrm{Let}\:\mathrm{X}\:=\:\sqrt{{x}} \\ $$$${x}\:=\:\mathrm{4}\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\Rightarrow\:\mathrm{X}\:=\:\mathrm{2}\:\mathrm{is}\:\mathrm{a}\:\mathrm{root} \\ $$$$\left(\mathrm{3}\right)\::\:\mathrm{X}^{\mathrm{4}} −\mathrm{14X}^{\mathrm{2}} +\mathrm{X}+\mathrm{38}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{X}−\mathrm{2}\right)\left(\mathrm{X}^{\mathrm{3}} +\mathrm{2}{X}^{\mathrm{2}} −\mathrm{10}{X}−\mathrm{19}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{Let}\:{f}\left(\mathrm{X}\right)\:=\:\mathrm{X}^{\mathrm{3}} +\mathrm{2X}^{\mathrm{2}} −\mathrm{10X}−\mathrm{19} \\ $$$${f}'\left(\mathrm{X}\right)\:=\:\mathrm{3X}^{\mathrm{2}} +\mathrm{4X}−\mathrm{10} \\ $$$${f}'\left(\mathrm{X}\right)\:=\:\mathrm{3}\left(\mathrm{X}^{\mathrm{2}} +\frac{\mathrm{4}}{\mathrm{3}}\mathrm{X}−\frac{\mathrm{10}}{\mathrm{3}}\right) \\ $$$${f}'\left(\mathrm{X}\right)\:=\:\mathrm{3}\left(\mathrm{X}+\frac{\mathrm{2}+\sqrt{\mathrm{34}}}{\mathrm{3}}\right)\left(\mathrm{X}+\frac{\mathrm{2}−\sqrt{\mathrm{34}}}{\mathrm{3}}\right) \\ $$$$...\mathrm{etc} \\ $$$${f}\:\mathrm{admit}\:\mathrm{one}\:\mathrm{real}\:\mathrm{positive}\:\mathrm{root}\:: \\ $$$$\mathrm{X}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{14}+\sqrt[{\mathrm{3}}]{\mathrm{3194}+\mathrm{3}\sqrt{\mathrm{334731}}}+\frac{\mathrm{193}\sqrt[{\mathrm{3}}]{\mathrm{4}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{6388}+\mathrm{6}\sqrt{\mathrm{334731}}}}\right] \\ $$$$\mathrm{X}\:\approx\:\mathrm{14},\mathrm{119789502} \\ $$$$\Rightarrow\:{x}\:>\:\mathrm{196}\:\Rightarrow\:{y}\:<\:\mathrm{0}\::\:\mathrm{impossible}\:! \\ $$$$ \\ $$$$\mathrm{Finally},\:\mathrm{only}\:\mathrm{one}\:\mathrm{solution}\:\left({x},{y}\right)\:=\:\left(\mathrm{4},\mathrm{9}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com