Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 125136 by Snail last updated on 08/Dec/20

Suppose a,b,c are nonzero real numbers  satisfying (ab+bc+ca)^3 =abc(a+b+c)^3 .  Provd that a,b,c must be terms of a Geometric  Progession

$${Suppose}\:{a},{b},{c}\:{are}\:{nonzero}\:{real}\:{numbers} \\ $$$${satisfying}\:\left({ab}+{bc}+{ca}\right)^{\mathrm{3}} ={abc}\left({a}+{b}+{c}\right)^{\mathrm{3}} . \\ $$$${Provd}\:{that}\:{a},{b},{c}\:{must}\:{be}\:{terms}\:{of}\:{a}\:{Geometric} \\ $$$${Progession} \\ $$$$ \\ $$

Commented by Snail last updated on 08/Dec/20

Please try to solve without expanding the cubic  in an easy method

$${Please}\:{try}\:{to}\:{solve}\:{without}\:{expanding}\:{the}\:{cubic} \\ $$$${in}\:{an}\:{easy}\:{method} \\ $$

Commented by Dwaipayan Shikari last updated on 08/Dec/20

(((ab+bc+ca)/(a+b+c)))^3 =abc  (((a^2 r+a^2 r^3 +a^2 r^2 )/(a+ar+ar^2 )))^3 =a^3 r^3 =abc

$$\left(\frac{{ab}+{bc}+{ca}}{{a}+{b}+{c}}\right)^{\mathrm{3}} ={abc} \\ $$$$\left(\frac{{a}^{\mathrm{2}} {r}+{a}^{\mathrm{2}} {r}^{\mathrm{3}} +{a}^{\mathrm{2}} {r}^{\mathrm{2}} }{{a}+{ar}+{ar}^{\mathrm{2}} }\right)^{\mathrm{3}} ={a}^{\mathrm{3}} {r}^{\mathrm{3}} ={abc} \\ $$

Commented by Snail last updated on 08/Dec/20

This is thorrowly wrong ...because  u can′t  assume they are inG.P .....u have to prove that  u have proved the vice-versa result......Try   another way

$${This}\:{is}\:{thorrowly}\:{wrong}\:...{because}\:\:{u}\:{can}'{t} \\ $$$${assume}\:{they}\:{are}\:{inG}.{P}\:.....{u}\:{have}\:{to}\:{prove}\:{that} \\ $$$${u}\:{have}\:{proved}\:{the}\:{vice}-{versa}\:{result}......{Try}\: \\ $$$${another}\:{way} \\ $$

Answered by Dwaipayan Shikari last updated on 08/Dec/20

b=ka  c=ta  (ab+bc+ca)^3 =(a^2 k+a^2 kt+a^2 t)^3 =a^6 (k+t+kt)^3   (a+b+c)^3 =a^3 (k+t+1)  (k+t+kt)^3 =kt(k+t+1)^3        k=(p/t)  ⇒(1+((kt−1)/(k+t+1)))^3 =kt  ⇒(1+((p−1)/(p(t+(1/t))+1)))^3 =p⇒((p−1)/(p(t+(1/t))+1))=(p)^(1/3) −1        p=m^3   ⇒((m^2 +m+1)/(m^3 (t+(1/t))+1))=1⇒m^2 +m=m^3 (t+(1/t))⇒m+1=m^2 (t+(1/t))  t=((m+1+(√((m+1)^2 −4m^4 )))/(2m^2 ))  k=p(((m+1−(√((m+1)^2 −4m^4 )))/(2m^2 )))  p=1   b=a(1/((((m+1+(√((m+1)^2 −4m^4 )))/(2m^2 ))))) , c=a((((m+1+(√((m+1)^2 −4m^4 )))/(2m^2 ))))

$${b}={ka} \\ $$$${c}={ta} \\ $$$$\left({ab}+{bc}+{ca}\right)^{\mathrm{3}} =\left({a}^{\mathrm{2}} {k}+{a}^{\mathrm{2}} {kt}+{a}^{\mathrm{2}} {t}\right)^{\mathrm{3}} ={a}^{\mathrm{6}} \left({k}+{t}+{kt}\right)^{\mathrm{3}} \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{3}} ={a}^{\mathrm{3}} \left({k}+{t}+\mathrm{1}\right) \\ $$$$\left({k}+{t}+{kt}\right)^{\mathrm{3}} ={kt}\left({k}+{t}+\mathrm{1}\right)^{\mathrm{3}} \:\:\:\:\:\:\:{k}=\frac{{p}}{{t}} \\ $$$$\Rightarrow\left(\mathrm{1}+\frac{{kt}−\mathrm{1}}{{k}+{t}+\mathrm{1}}\right)^{\mathrm{3}} ={kt} \\ $$$$\Rightarrow\left(\mathrm{1}+\frac{{p}−\mathrm{1}}{{p}\left({t}+\frac{\mathrm{1}}{{t}}\right)+\mathrm{1}}\right)^{\mathrm{3}} ={p}\Rightarrow\frac{{p}−\mathrm{1}}{{p}\left({t}+\frac{\mathrm{1}}{{t}}\right)+\mathrm{1}}=\sqrt[{\mathrm{3}}]{{p}}−\mathrm{1}\:\:\:\:\:\:\:\:{p}={m}^{\mathrm{3}} \\ $$$$\Rightarrow\frac{{m}^{\mathrm{2}} +{m}+\mathrm{1}}{{m}^{\mathrm{3}} \left({t}+\frac{\mathrm{1}}{{t}}\right)+\mathrm{1}}=\mathrm{1}\Rightarrow{m}^{\mathrm{2}} +{m}={m}^{\mathrm{3}} \left({t}+\frac{\mathrm{1}}{{t}}\right)\Rightarrow{m}+\mathrm{1}={m}^{\mathrm{2}} \left({t}+\frac{\mathrm{1}}{{t}}\right) \\ $$$${t}=\frac{{m}+\mathrm{1}+\sqrt{\left({m}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{m}^{\mathrm{4}} }}{\mathrm{2}{m}^{\mathrm{2}} }\:\:{k}={p}\left(\frac{{m}+\mathrm{1}−\sqrt{\left({m}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{m}^{\mathrm{4}} }}{\mathrm{2}{m}^{\mathrm{2}} }\right) \\ $$$${p}=\mathrm{1} \\ $$$$\:{b}={a}\frac{\mathrm{1}}{\left(\frac{{m}+\mathrm{1}+\sqrt{\left({m}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{m}^{\mathrm{4}} }}{\mathrm{2}{m}^{\mathrm{2}} }\right)}\:,\:{c}={a}\left(\left(\frac{{m}+\mathrm{1}+\sqrt{\left({m}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{m}^{\mathrm{4}} }}{\mathrm{2}{m}^{\mathrm{2}} }\right)\right) \\ $$$$ \\ $$

Commented by Snail last updated on 08/Dec/20

Quite good

$${Quite}\:{good} \\ $$

Commented by Snail last updated on 09/Dec/20

Here is a mistake in 5 th line where in denominator  u have writen p(t+(1/t)) instead of  ( (p/t)+t)

$${Here}\:{is}\:{a}\:{mistake}\:{in}\:\mathrm{5}\:{th}\:{line}\:{where}\:{in}\:{denominator} \\ $$$${u}\:{have}\:{writen}\:{p}\left({t}+\frac{\mathrm{1}}{{t}}\right)\:{instead}\:{of}\:\:\left(\:\frac{{p}}{{t}}+{t}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com