Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 124944 by udaythool last updated on 07/Dec/20

1. (a, m)=(b, m)=1⇒(ab, m)=1  2. c∣ab and (c, a)=1⇒c∣b  3. If c is a common multiple of  a and b then [a, b]∣c  4. [ma, mb]=m[a, b] for all int m>0  5. [a, b](a, b)=∣ab∣  6. Let g>0, s be integers. Show  that g∣s iff ∃ integers x, y such  that s=x+y and (x, y)=g

$$\mathrm{1}.\:\left({a},\:{m}\right)=\left({b},\:{m}\right)=\mathrm{1}\Rightarrow\left({ab},\:{m}\right)=\mathrm{1} \\ $$ $$\mathrm{2}.\:{c}\mid{ab}\:\mathrm{and}\:\left({c},\:{a}\right)=\mathrm{1}\Rightarrow{c}\mid{b} \\ $$ $$\mathrm{3}.\:\mathrm{If}\:{c}\:\mathrm{is}\:\mathrm{a}\:\mathrm{common}\:\mathrm{multiple}\:\mathrm{of} \\ $$ $${a}\:\mathrm{and}\:{b}\:\mathrm{then}\:\left[{a},\:{b}\right]\mid{c} \\ $$ $$\mathrm{4}.\:\left[{ma},\:{mb}\right]={m}\left[{a},\:{b}\right]\:\mathrm{for}\:\mathrm{all}\:\mathrm{int}\:{m}>\mathrm{0} \\ $$ $$\mathrm{5}.\:\left[{a},\:{b}\right]\left({a},\:{b}\right)=\mid{ab}\mid \\ $$ $$\mathrm{6}.\:\mathrm{Let}\:{g}>\mathrm{0},\:{s}\:\mathrm{be}\:\mathrm{integers}.\:\mathrm{Show} \\ $$ $$\mathrm{that}\:{g}\mid{s}\:\mathrm{iff}\:\exists\:\mathrm{integers}\:{x},\:{y}\:\mathrm{such} \\ $$ $$\mathrm{that}\:{s}={x}+{y}\:\mathrm{and}\:\left({x},\:{y}\right)={g} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com