Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 124928 by bemath last updated on 07/Dec/20

 What are the exact values of k  for which the line y=kx+3  is tangent to the circle with  centre (6,3) and radius 2?

$$\:{What}\:{are}\:{the}\:{exact}\:{values}\:{of}\:{k} \\ $$$${for}\:{which}\:{the}\:{line}\:{y}={kx}+\mathrm{3} \\ $$$${is}\:{tangent}\:{to}\:{the}\:{circle}\:{with} \\ $$$${centre}\:\left(\mathrm{6},\mathrm{3}\right)\:{and}\:{radius}\:\mathrm{2}? \\ $$

Answered by mr W last updated on 07/Dec/20

2=((6k−3+3)/( (√(k^2 +1))))  8k^2 =1  ⇒k=±((√2)/4)

$$\mathrm{2}=\frac{\mathrm{6}{k}−\mathrm{3}+\mathrm{3}}{\:\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{8}{k}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow{k}=\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com