Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 124795 by benjo_mathlover last updated on 06/Dec/20

Answered by mathmax by abdo last updated on 17/Dec/20

p prime ⇒Z/pZ is a corps  we have  for alla_i  ∈ Z/pZ  (a_1 +a_2 +...+a_n )^p   ≡a_1 ^p  +a_2 ^p +....+a_n ^p [p]  (we get this by recurrence on n)  for a_1 =a_2 =....=a_n =1  we get (1+1+...+1)^p  ≡1+1...+1[p] ⇒  n^p  ≡n[p]

$$\mathrm{p}\:\mathrm{prime}\:\Rightarrow\mathrm{Z}/\mathrm{pZ}\:\mathrm{is}\:\mathrm{a}\:\mathrm{corps}\:\:\mathrm{we}\:\mathrm{have}\:\:\mathrm{for}\:\mathrm{alla}_{\mathrm{i}} \:\in\:\mathrm{Z}/\mathrm{pZ} \\ $$$$\left(\mathrm{a}_{\mathrm{1}} +\mathrm{a}_{\mathrm{2}} +...+\mathrm{a}_{\mathrm{n}} \right)^{\mathrm{p}} \:\:\equiv\mathrm{a}_{\mathrm{1}} ^{\mathrm{p}} \:+\mathrm{a}_{\mathrm{2}} ^{\mathrm{p}} +....+\mathrm{a}_{\mathrm{n}} ^{\mathrm{p}} \left[\mathrm{p}\right]\:\:\left(\mathrm{we}\:\mathrm{get}\:\mathrm{this}\:\mathrm{by}\:\mathrm{recurrence}\:\mathrm{on}\:\mathrm{n}\right) \\ $$$$\mathrm{for}\:\mathrm{a}_{\mathrm{1}} =\mathrm{a}_{\mathrm{2}} =....=\mathrm{a}_{\mathrm{n}} =\mathrm{1}\:\:\mathrm{we}\:\mathrm{get}\:\left(\mathrm{1}+\mathrm{1}+...+\mathrm{1}\right)^{\mathrm{p}} \:\equiv\mathrm{1}+\mathrm{1}...+\mathrm{1}\left[\mathrm{p}\right]\:\Rightarrow \\ $$$$\mathrm{n}^{\mathrm{p}} \:\equiv\mathrm{n}\left[\mathrm{p}\right] \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com